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Abstract

This paper considers the general problem of detecting change in non-stationary signals using fea-

tures observed in the time–frequency (t, f) domain, obtained using a class of quadratic time–

frequency distributions (QTFDs). The focus of this study is to propose a methodology to define

new (t, f) features by extending time-only and frequency-only features to the joint (t, f) domain

for detecting changes in non-stationary signals. The (t, f) features are used as a representative

subset characterizing the status of the observed non-stationary signal. Change in the signal is

then reflected as a change in the (t, f) features. This (t, f) approach is applied to the problem of

detecting abnormal brain activity in newborns (e.g. seizure) using measurements of the EEG for

diagnosis and prognosis. In addition, a pre-processing stage for detecting artifacts in EEG signals

for signal enhancement is studied and implemented separately. Overall results indicate that, in

general, the (t, f) approach results in an improved performance in detecting artifacts and seizures

in newborn EEG signals as compared to time-only or frequency-only features.
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1. Introduction

1.1. Change detection in non-stationary signals

Change detection in signals is the process of identifying di↵erences in the state of an object or

phenomenon by observing the signal generated by the process at di↵erent times. It has attracted

widespread interest due to a large number of applications in diverse disciplines, including medical

diagnosis [1, 2].

The goal of this study is to propose and test new features that can be used to detect changes

in non-stationary signals that appear because of transition of an object from a normal state to

an abnormal state or from one abnormal state to another abnormal state. For example, the

appearance of seizure in EEG signals is a transition from a normal state to an abnormal state that

can result in death or long term handicap. For applications involving non-stationary signals for

which the spectral characteristics change with time, time–frequency (t, f) methods have proved

a valuable tool based on their ability to highlight and describe such time–varying characteristics

[1]. For such signals, time–frequency distributions (TFDs) allow greater insight into the nature

of the information carried by the signal. In particular, TFD’s ability to show how the energy of

the signal is distributed over the 2D (t, f) domain helps identify important features such as the

number of signal components, rate of change, and regions of energy concentration. In general,

such information cannot be obtained directly from signals representations in time or frequency

domains and therefore it is desired to test the hypothesis that (t, f) methods should allow for more

accurate change detection in non-stationary signals. For these reasons, this paper aims to present

(t, f) features that are extracted from the TFD of a signal and exploit the additional information

provided by signal variations in terms of non-stationarities observed in the (t, f) domain. Such (t, f)

features can therefore be considered suitable for monitoring and change detection in non-stationary
2



signals.

1.2. Paper contributions and organization

The main technical novelties of this study are three-fold: first, it introduces new (t, f)-based

features suitable for change detection in non-stationary signals. Second, it presents a methodology

for extending time–domain (t-domain) and frequency–domain (f -domain) features to the joint

(t, f) domain. Third, it uses the introduced features to detect changes in EEG signals such as

those caused by the presence of artifacts and brain abnormal activities.

Without loss of generality, this paper considers an illustrative application on a specific biomed-

ical signal, namely, the newborn electroencephalography (EEG), and presents methodologies for

detecting changes in the internal structure of signals as well as changes caused by external corrupt-

ing artifacts. As the signal characteristics vary in the transition from normal EEG to abnormal

EEG, change detection techniques can be applied to newborn EEG signals for automatic diagnosis

of abnormal brain activities and for signal enhancement. Traditional methods for detecting changes

in EEG signals mostly concentrate on visual inspection which is a laborious and time-consuming

task especially in the case of long recordings [1]. It also requires skilled interpreters; i.e. a neu-

rophysiologist, who could be prone to subjective judgment and error that can result in serious

consequences such as death or long term handicap. This paper tests the 2 point hypothesis that a)

TFDs are well–adapted for detecting variations such as EEG abnormalities [1, 3] using a combined

(t, f) pattern recognition and machine learning approach, and b) that an improved performance

can be obtained when we replace t-domain or f -domain features by their corresponding extended

(t, f) features.

The design of an automatic abnormality pattern recognition system requires defining repre-

sentations that are suitable to show these abnormality patterns in a clear way using a range of
3



features, as well as allow feature extraction and selection. For the case of detection of newborn

EEG abnormalities, the results in this paper confirm that TFDs and (t, f) based features can

result in a reliable and accurate recognition system which is an improvement upon time–only or

frequency–only features. A receiver operating characteristics (ROC) analysis is selected as a per-

formance metric to evaluate the performance of each (t, f) feature when used to detect changes in

newborn EEG signals. A comparison is also made between the performance of the (t, f) features

extracted from di↵erent quadratic TFDs (QTFDs) including the extended modified B-distribution

(EMBD) [1, 4]. The results of applying those features to data sets of newborn EEG signals marked

for seizures reveal that the selected (t, f) features consistently result in a high degree of discrimi-

nation between di↵erent states in the signals. Further, a baseline comparison between time–only

or frequency–only features and their translated extended (t, f) features show that the latter can

improve the detection performance, thus justifying the (t, f) approach selected in this paper and

verifying the research hypothesis.

The rest of the paper is organized as follows. Section 2 reviews relevant background about EEG

signals. In Section 3, methodologies for automatic detection of artifacts and seizures in newborn

EEG signals are described, including the key formulation of the (t, f) features. The results of

applying such methodology to real data are provided in Section 4 and Section 5 concludes.

2. Newborn EEG signals

2.1. Newborn EEG seizures

EEG is the recording of brain electrical activities measured by electrodes placed on the scalp

(see Figure 1). As EEG signals can be collected non-invasively and most brain related abnor-

malities show clear abnormal variations on EEG recordings, they are widely used for assessment
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Figure 1: Recording newborn EEG signals.

of brain diseases and disorders [1]. Previous studies have shown that background EEG activities

often provide objective evidence of the degree and severity of the underlying cause and that ab-

normal activities are correlated with adverse physical and/or neurological outcomes. Specifically

in newborns, the presence of seizures carry with them a high probability of poor neurodevelop-

mental outcome or even death [5]. Newborn EEG seizures exhibit variations in voltage, duration,

frequency content, and waveform shape (see illustrative example in Figure 2).

Techniques for automatic seizure detection using EEG signals include the use of time–domain

statistics [6], spectral features [7], combination of time–only (t-only) with frequency–only (f -only)

features [8], autoregressive (AR) modeling [9, 10], and non–linear analysis [11]. The above are

limited in their performance as they do not take into account the property of non-stationarity,

and instead they use the assumption of stationarity. Previous studies have shown that (t, f) based

techniques which account for non-stationarities have superior performance for detecting seizures

in newborn EEG signals [12, 13, 14]. These findings motivated the need to define and assess the

performance of the (t, f) features presented in Section 3.3.3 for automatic seizure detection in
5



Figure 2: EEG of a newborn showing seizure patterns. The plot at the bottom shows the binary mask prepared
based on the clinical observation of a pediatric neurologist. Note that only 4 EEG channels (out of 20 recorded EEG
channels) displaying clear seizure patterns are shown in the figure.

newborn EEG.

2.2. Newborn EEG Artifact Detection

A major problem with the implementation of a fully automatic EEG diagnostic system in

neonatal intensive care unit (NICU) is the contamination of the EEG by various artifacts in sections

of the EEG recording (see illustrative example in Figure 3). These artifacts impede automated

neonatal EEG analyses thereby limiting their usefulness to the neonatologist in the NICU. Any

automated system that is considered for use in the NICU needs to have a pre-processing stage to

detect artifacts.

This study is a contribution towards an overall plan to develop such an automated EEG diag-

nostics system. In order to develop and deploy such a system in NICUs, there is a need to design

the pre-processing artifact detection system as a switch that passes artifact free signal segments to

the automated EEG signal classification system but redirects artifact contaminated EEG segments
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Figure 3: EEG of a newborn contaminated by artifacts. The plot at the bottom shows the binary mask prepared by
a pediatric neurologist.

to an artifact removal system; the objective being to ensure that artifact free segments are not

distorted by unnecessary filtering that can degrade useful information. The overall block diagram

is shown in Figure 4. As previously mentioned, a major di�culty with all of the above objectives

is that EEG signals are non-stationary [1], with spectral characteristics that change with time,

and, therefore require a (t, f) approach, as detailed in Section 3. Note that the 2 stages of artifact

removal and abnormality identification are shown only for context, as they are not included in the

scope of this contribution.

A large number of methods for artifact detection have been developed in the case of adult

EEG signals [15, 16, 17, 18], but these methods cannot be applied to neonatal EEG signals as

the latter have much more diversity in their patterns [19]. Previous studies used features based

on spectral, temporal, statistical properties and wavelet decomposition to discriminate artifacts

from other abnormalities having similar morphologies [19], but the method is not general enough

to discriminate all kinds of artifact free signals from with-artifact signals. Instead, this new study

assesses the performance of a new set of (t, f) features in discriminating signals corrupted by

artifacts from signals free of artifacts without taking into account the underlying characteristics of
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Figure 4: Overall block diagram of an EEG-based automatic diagnostic system. Note that artifact removal and
abnormality identification stages are not part of this contribution.

EEG signals. This is necessary as a pre-processing stage for a refined decision–making in newborn

EEG.

3. Automated detection of newborn EEG abnormalities and artifacts using (t, f) fea-

tures

3.1. Newborn EEG databases

This study used the following two databases.

Database 1 is composed of multichannel EEG signals with 20 channels of continuous EEG record-

ings collected from 5 newborns admitted to the Royal Brisbane and Women’s Hospital, Brisbane,

Australia. Fig. 5 shows the arrangement of the 20 electrodes used for acquiring the EEG signals

recorded in this study. The channels are labeled as: F4-T4, T4-T6, T6-O2, F3-T3, T3-T5, T5-

O1, F4-C4, C4-P4, P4-O2, F3-C3, C3-P3, P3-O1, T4-C4, C4-CZ, CZ-C3, C3-T3, T6-P4, P4-PZ,

PZ-P3, and P3-T5. The average recording per subject was 28 minutes. The signals were recorded

using bipolar montage, according to the 10-20 standard [20], by a Medelec Profile system (Medelec,
8
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Figure 5: Location and nomenclature of the electrodes on the baby’s head. The circles show the location of the 20
electrodes from which the signals have been recorded.

Oxford Instruments, Old Woking, UK) at f
s

= 256 Hz sampling rate. Seizures were marked in the

acquired EEG signals by a paediatric neurologist from the Royal Children’s Hospital, Brisbane,

Australia.

Database 2 consists of one hour long EEG recordings from 39 neonates, acquired at Cork Uni-

versity Maternity Hospital, Ireland for Qatar University as part of a Qatar National Research

Foundation (QNRF) funded NPRP project. The EEG data was recorded using the Nicolet One

video-EEG. A referential montage of 9 electrodes placed at F3, F4, C3, C4, CZ, T3, T4, O1, and

O2 was used to record the EEG (based on the 10-20 International System of Electrode Place-

ment). An 8 channel bipolar montage, i.e. F4-C4, F3-C3, C4-02, C3-01, T4-C4, C3-T3, C4-CZ,

and CZ-C3, was formed from these electrodes. The data was recorded with a sampling frequency

of 256 Hz; this is followed by bandpass filtering in (0.5 � 70) Hz band with an additional 50 Hz

notch filter. The database was marked for artifact by an experienced EEG specialist, with 50% of

the artifacts annotated on a channel by channel basis. This database contains artifacts generated
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by the movement of subjects, eye blinking, electrocardiogram, respiration, electrode disconnect,

interference from the other electrical appliances in NICU, and sweating [21].

3.2. Time-frequency image formation

This study used (t, f) features extracted from the images formed by the quadratic TFD (QTFD)

of EEG signals to detect changes in the signals caused by the presence of abnormalities or artifacts.

To do this, each EEG segment, i.e. x[n], was first transformed to the (t, f) domain using a QTFD

⇢
z

x

[n, k] which can be expressed as [1]:

⇢
z

x

[n, k] = 2 DFT
m!k

n

G[n, m] ⇤
n

(z
x

[n + m]z⇤
x

[n�m])
o

(1)

where z
x

[n] = x[n] +H{x[n]} and H{ } stands for the Hilbert transform [3, pp. 13–15]. QTFDs

represent a class of methods widely used in practical applications for representing and processing

non-stationary signals [1]. In (1), G[n, m] is the time–lag kernel of the TFD and ⇤
n

stands for

discrete convolution in time. For an N–point signal x[n] , ⇢
z

x

[n, k] is represented by an N ⇥M

matrix ⇢zx where M is the number of FFT points used in calculating the TFD. Note that M = N

if N is a power of 2; otherwise M is equal to the next power of 2 above N .

Di↵erent kernels G[n, m] in (1) allow to define di↵erent TFDs, that are most specifically adapted

to particular classes of signals [1]. For the analysis of multicomponent signals, such as newborn

EEGs, it is often intuitively expected that one needs to use TFDs which reduce the e↵ects of

cross–terms while giving a good resolution. These TFDs are known as reduced interference TFDs

(RI-TFDs). Five RI-TFDs are considered in this study, namely: modified B–distribution (MBD),

Smoothed Wigner–Ville distribution (SWVD), Choi–Williams distribution (CWD), Spectrogram

(SPEC), and extended MBD (EMBD) [1, 4]. In addition, the WVD was also used in the comparison
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Distribution G[n, m] Parameters

WVD �[n] N/A

SWVD �[n]w[m] w[n]:Hamming, N

4

samples long

CWD
p

⇡�

2|m| exp
⇣

�⇡2
�n

2

4m

2

⌘

� = 5

SPEC w[n + m]w[n�m] w[n]:Hamming, N

4

samples long

MBD cosh

�2�

n

P

n

cosh

�2�

n

� = 0.01

EMBD cosh

�2�

n

P

n

cosh

�2�

n

cosh

�2↵

m

P

n

cosh

�2↵

m

↵ = 0.9, � = 0.01

Table 1: The time-lag kernels of the TFDs used in this paper. (The parameters ↵, �, and � are real and positive,
N is the length of the signal under analysis, and w[n] represents the window function used in SWVD and SPEC
kernels.)

as it was shown that under some circumstances, the cross–terms caused by the bi–linearity of the

WVD can be useful for classification [22]. The expressions for the time–lag kernels G[n, m] of those

selected TFDs are listed in Table 1. The parameters of the TFDs given in Table 1 are typical ones

for which the TFDs have shown good performances in analyzing EEG signals [1, 3, 4].

3.3. Feature extraction

TFDs are rich in information, but all the (t, f) points cannot be used as features for the

classification as that would significantly increase the dimensionality of the problem. In order to

avoid this curse of dimensionality, a small representative set of features describing the relevant

information for the signal classification must be extracted from TFDs. This section presents first a

methodology for defining new (t, f) features by extending t-domain and f -domain features to the

joint (t, f) domain. In addition, some additional complementary and inherent (t, f) features are

presented for completeness.
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3.3.1. Extension of f-domain features to the joint (t, f) domain

Frequency–domain features such as the spectral flux, spectral entropy and spectral flatness

are often employed for the detection of abnormalities in biomedical signals [23]. However, these

features do not consider the time–varying characteristic of non-stationary signals and may fail to

discriminate between two such signals that are di↵erent but have similar magnitude spectrum [3,

Chapter 1]. For example, the spectral flatness can be used to discriminate between a narrow band

signal (e.g. a tone) and a wide band signal (e.g. pure noise or a linear frequency modulated (LFM)

signal), but it cannot discriminate between two di↵erent wide band signals like an LFM signal and

noise occupying the same bandwidth although these two signals have completely di↵erent (t, f)

signatures. This problem of the above mentioned f -domain features can be overcome by extending

them to the (t, f) domain as discussed below.

1. Extension of spectral flux to (t, f) flux: The spectral flux measures the rate of change

of the spectral content of a signal with time and, by extension, it can be estimated directly

from the signal’s TFD using [24]:

FL
(f)

=
N

X

n=1

N

X

k=1

�

�

�

⇢
z

x

[n + l, k]� ⇢
z

x

[n, k]
�

�

�

(2)

where l is the time-duration between two slices of a TFD and it can assume any integer value

between 1 to N � 1. This measure can be used to discriminate a signal with slow varying

spectral content (e.g. EEG seizure signals with LFM characteristics) from a signal with a

fast varying spectral content (e.g. EEG background) as the spectral flux for the former class

of signals should be lower compared to the latter class of signals. In this study, l = N/4 was

chosen in (2).
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The spectral flux as defined in (2), has a limitation as for instance, it cannot discriminate

EEG seizure signals with spiky characteristics from the EEG background as TFDs of such

EEG seizure signals have a sudden variation of the signal energy along the time-axis resulting

in a higher spectral flux. In order to measure the variation of the signal energy both along

time and along frequency axes, the (t, f) flux is defined as:

FL
(t,f)

=
N�l

X

n=1

M�m

X

k=1

�

�

�

⇢
z

x

[n + l, k + m]� ⇢
z

x

[n, k]
�

�

�

(3)

where l and m are predetermined values that depend on the rate of change of the signal

energy in the (t, f) plane. They can assume any integer value in between 0 to N -1 and 0 to

M -1 respectively. This study used l = 1 and m = 1 in (3) to calculate the (t, f) flux.

2. Extension of spectral flatness to (t, f) flatness: The spectral flatness (SF) measures the

level of uniformity of the energy distribution in the f -domain and is defined as the geometric

mean of the magnitude spectrum of the signal normalized by its arithmetic mean, i.e. [24]:

SF
(f)

= M

⇣

Q

M

k=1

�

�

�

Z
x

[k]
�

�

�

⌘

M

�1

P

M

k=1

�

�

�

Z
x

[k]
�

�

�

(4)

where Z
x

[k] is the Fourier transform (FT) of the analytic associate of a real signal x[n] and

M is the length of Z
x

[k]. A maximum value occurs when all values of Z
x

[k] are equal. A

high value of the SF implies that a signal is wide–band, whereas a low value of the SF implies

that a signal is narrow–band. This measure discriminates a pure noise from a tone embedded

in noise. However, it cannot detect an LFM signal in noise as the LFM signal is also a

wide–band signal just like noise.

TFDs concentrate energy for LFM signals just like the FT concentrates energy for tones. A
13



feature that measures the flatness of a TFD can therefore be used to detect an LFM signal in

noise. For this purpose, the SF is extended to the (t, f) flatness by replacing the geometric

and arithmetic means of the FT of a signal in (4) with the geometric and arithmetic means

of a TFD. The (t, f) flatness is thus defined as:

SF
(t,f)

= MN

Q

N

n=1

Q

M

k=1

⇢
z

x

[n, k]
P

N

n=1

P

M

k=1

⇢
z

x

[n, k]
· (5)

The (t, f) flatness, for instance, can be used to detect the seizure activity in EEG signals as

the energy of EEG seizure signals is usually concentrated in the (t, f) domain along the IFs

of the signal components resulting in lower values of the (t, f) flatness, whereas the energy of

the EEG background signal is randomly distributed in the (t, f) domain resulting in higher

values of the (t, f) flatness. Note that the (t, f) flatness assumes zero value even if there is

a single zero in a TFD. So, in practical implementations all zeros of a TFD are replaced by

very small values (i.e. epsilon in MATLAB).

3. Extension of spectral entropy to (t, f) entropy: The spectral entropy (SE) measures

the randomness in the distribution of the signal energy in the f -domain and can be defined

as [24]:

SE
(f)

= �
M

X

k=1

Z
x

[k] log
2

Z
x

[k] (6)

where Z
x

[k] =
�

�Z
x

[k]
�

�

2

/
⇣

P

k

�

�Z
x

[k]
�

�

2

⌘

. High SE implies more randomness or the uniform

distribution of the signal energy in a f -domain; while low entropy implies less randomness

or more concentration of the signal energy in the f -domain. A simple extension of the SE is
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obtained by replacing the FT of the signal in (6) with its normalized TFD, i.e.:

SE
(t,f)

= �
N

X

n=1

M

X

k=1

⇢
z

x

[n, k]
P

n

P

k

⇢
z

x

[n, k]
log

2

✓

⇢
z

x

[n, k]
P

n

P

k

⇢
z

x

[n, k]

◆

(7)

and is known as the (t, f) Shannon entropy [3, Section 7.3]. It measures the randomness of

the distribution of the signal energy in a (t, f) domain. A higher value of SE
(t,f)

implies

that the signal energy is uniformly spread in the (t, f) plane while a lower value of SE
(t,f)

indicates that the signal energy is more concentrated in specific regions in the (t, f) plane.

This measure can be used to discriminate between two kinds of wide–band signals such that

one class of signals is sparser in the (t, f) plane as compared to the other class; e.g. the

energy of EEG seizure signals is more concentrated in the (t, f) domain as compared to the

random EEG background.

The (t, f) Shannon entropy has some limitations as it cannot be used for TFDs that can

assume negative values. For such TFDs, the (t, f) Renyi entropy and normalized (t, f) Renyi

entropy can be used [25]. Here, the normalized (t, f) Renyi entropy is used because of its

superior performance in terms of its ability to discriminate EEG seizure signals from the

EEG background. It is defined as [3, Section 7.3]:

RE
(t,f)

=
1

1� ↵
log

2

N

X

n=1

M

X

k=1

✓

⇢
z

x

[n, k]
P

n

P

k

⇢
z

x

[n, k]

◆

↵

(8)

where ↵ is an odd integer and ↵ > 2. In this study, we have chosen ↵ = 3 [25].
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Feature t-domain representation (t, f) Extension

mean m
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= 1
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3
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P
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= 1
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= 1
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(t)

P

n

(x[n]�m
(t)

)4 k
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= 1

(NM�1)�

4
(t,f)

P

n
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k

(⇢
z

x
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(t,f)

)4

coe�cient
of variation

c
(t)

= �(t)

m(t)
c
(t,f)

= �(t,f)

u

(t,f)

Table 2: Time–frequency extension of t-domain features.

3.3.2. Extension of t-domain features to joint (t, f) domain

Several t-domain features are directly related to the statistical properties of a signal under the

assumption that normal and abnormal signals have di↵erent probability distributions, implying

that the parameters characterizing the probability distributions of normal and abnormal signals

can be used as features. A list of statistical features that can be extracted from the t-domain

representation is given in Table 2. In order to exploit the additional information provided by

TFDs, the t-domain features are extended to the (t, f) features by simply replacing the 1D t-

domain moments with the corresponding 2D (t, f) domain moments as illustrated in Table 2. So,

in essence, signal characteristics are extended to (t, f) image characteristics.

There are in fact more (t, f) features that can be defined as extensions, including the instan-

taneous frequency (IF) which is an extension of the mean or central frequency. But as the IF is a

function and not a scalar, features based on the IF will be introduced in the next section for clarity

and convenience.
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3.3.3. Complementary inherent (t, f) features

Some features are inherently (t, f) features; they may not have an obvious direct meaningful

counterpart in either t-domain and f -domain. A list of a few such (t, f) features is given below for

completeness.

1. IF-based features can be derived from the statistics of the IF, i.e. f
z

x

[n]; this includes its

mean and its standard deviation, i.e. max (f
z

x

[n])�min (f
z

x

[n]).

The IF of a given non–stationary signal describes how its frequency content changes with time

[26]. For a mono-component signal x[n], the IF is defined as the derivative of its instantaneous

phase (IP) and can be estimated using di↵erent methods [27], such as the first order moment

of the signal’s TFD given by:

f
z

x

[n] =
f

s

2M

P

M

k=1

k⇢
z

x

[n, k]
P

M

k=1

⇢
z

x

[n, k]
· (9)

Note that this feature is included here as complementary although the IF can be interpreted

as the extension of the central frequency for non-stationary signals [3, p. 21]; such extension

is however a function and not a scalar, and the 1D corresponding feature to the IF standard

deviation would be meaningless.

2. Matrix decomposition based features are obtained from a decomposition of the TFD

matrix ⇢zx . This study uses two matrix decomposition methods, namely: singular value

decomposition (SVD) and non-negative matrix factorization (NMF) [28, 29]. Such methods

have proved useful in characterizing non-stationary signals [28, 30, 31].

(a) SVD can be performed on the N ⇥ M matrix ⇢zx . It divides the TFD matrix into

two subspaces, signal subspace and an orthogonal alternate subspace of the form given
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below in (10).

⇢zx = USV H (10)

where U is an N ⇥ N real matrix, S is an N ⇥M diagonal matrix with non-negative

real numbers (s
i

, i = 1, 2, · · · , N) on the diagonal, and V H (the conjugate transpose of

V is an M⇥M real unitary matrix. The diagonal entries of S are known as the singular

values of ⇢zx . SVD-based features are extracted from the singular values of the matrix

⇢zx . This includes, for example, the maximum of the singular values which can be

chosen as characteristic features of the singular values of ⇢zx . Another possible feature

is the (t, f) complexity measure estimated from the Shannon entropy of the singular

values of the matrix ⇢zx . It represents the magnitude and number of non-zero singular

values of a TFD and is given by:

CM = �
N

X

i=1

s̄
i

log
2

s̄
i

(11)

where s̄
i

, i = 1, 2, · · · , N are the normalized singular values of the matrix ⇢zx , i.e.

s̄
i

= s
i

/
P

i

s
i

.

(b) NMF is another matrix decomposition technique which can be used to extract features

from TFDs. It has the advantage of preserving the non-negativity of the entries which

is important to obtain meaningful physical interpretation under some circumstances.

Moreover, the resulting matrices have lower dimensions and thus provide a less complex

characterization of the original matrix [32].

The NMF factorizes a given non-negative matrix into two non-negative matrices as
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follows [32]:

⇢zx ⇡ WH =
R

X

r=1

w
r

h
r

(12)

where the columns of the matrices W (N ⇥ R) and H (R⇥M) are known as base

and coe�cient vectors, respectively, and R (R ⌧ min(M,N)) is the decomposition

parameter and is usually application–dependent. The base vectors, i.e. w
r

, r = 1, ..., R,

can be interpreted as characteristic frequency structures whereas the coe�cient vectors,

i.e. h
r

, r = 1, ..., R, can be regarded as the temporal location of these structures [31].

Based on the decomposition in (12), the sparsity of the base and coe�cient vectors can

be defined respectively as:

S
w

r

=
1p
N

0

@

p
N �

P

N

l=1

w
r

(l)
q

P

N

l=1

w2

r

(l)

1

A , r = 1, ..., R (13)

S
h

r

=
1p
M

0

@

p
M �

P

M

l=1

h
r

(l)
q

P

M

l=1

h2

r

(l)

1

A , r = 1, ..., R (14)

Di↵erent statistics of S
w

r

and S
h

r

such as their means and standard deviations (std)

can then be considered as NMF-based features.

3. TFD concentration measure determines the concentration of the signal’s representation

in the (t, f) domain [33]. Here, we use the definition given in [34] as it does not discriminate

between low concentrated components and highly concentrated ones. It is given by:

M =
 

N

X

n=1

M

X

k=1

|⇢
z

x

[n, k]| 12
!

2

. (15)

Note that the signals with power distributed all over the (t, f) plane have a larger M, while
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class feature name formula

extended f -domain fea-
tures; see eqs. (3), (5)
and (8)

(t, f) flux TF
1

= FL
(t,f)

(t, f) flatness TF
2

= SF
(t,f)

Renyi entopy TF
3

= RE
(t,f)

extended t-domain fea-
tures; see Table 2

mean TF
4

= m
(t,f)

variance TF
5

= �2

(t,f)

skewness TF
6

= �
(t,f)

kurtosis TF
7

= k
(t,f)

coe�cient of variation TF
8

= c
(t,f)

complementary (t, f)
features; see eqs. (9),
(11), (13), (14), and
(15)

mean of the IF TF
9

= 1

N

P

N

n=1

f
z

x

[n]
deviation of the IF TF

10

= max (f
z

x

[n])�min(f
z

x

[n])
maximum of singular values TF

11

= max(s̄
1

, ..., s̄
N

)
complexity measure TF

12

= CM

mean of S
w

r

TF
13

= 1

R

P

R

r=1

S
w

r

standard deviation of S
w

r

TF
14

= std(S
w1 , ..., Sw

r

)
mean of S

h

r

TF
15

= 1

R

P

R

r=1

S
h

r

standard deviation of S
h

r

TF
16

= std(S
h1 , ..., Sh

r

)
TFD concentration measure TF

17

= M
Table 3: Time–frequency features used for automatic detection of artifacts and seizures in newborn EEG signals;
(TF

i

is the i

th (t, f) feature, f

z

x

[n] is the IF of x[n], S̄1, ..., S̄N

are the normalized singular values of the matrix ⇢z
x

,
and S

w

r

and S

h

r

are the sparsity of the base and coe�cient vectors of ⇢z
x

, respectively).

those with power concentrated in certain areas are characterized by a smaller M. This

feature is also included in this section for convenience although it could be interpreted as an

extension of a f -domain feature.

3.4. Selected features

Among the (t, f) features presented in Section 3.3, a selected subset of features is listed in Table

3. In order to compare their performance with their t-domain and f -domain features counterparts,

and answer the main research question, the features listed in Table 4 were also extracted.

3.5. Implementation

From an EEG segment x[n], the (t, f) features listed in Table 3 were extracted from the TFD

⇢
z

x

[n, k]. The TFDs were calculated using (1) with the kernels listed in Table 1. The IF of x[n]

was estimated using the first order moment of its TFD ⇢
z

x

[n, k] (see (9)). Also, to decompose
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class feature name formula

f -domain features; see
eqs. (2), (4) and (6)

spectral flux F
1

= FL
(f)

spectral flatness F
2

= SF
(f)

spectral entropy F
3

= SE
(f)

t-domain features; see
Table 2

mean T
1

= m
(t)

variance T
2

= �2

(t)

skewness T
3

= �
(t)

kurtosis T
4

= k
(t)

coe�cient of variation T
5

= c
(t)

Table 4: t-domain and f -domain features used for automatic detection of artifacts and seizures in newborn EEG
signals; (T

i

and F

i

are the i

th

t-domain and f -domain features, respectively).

the TFD matrices, we used an NMF approximation based on alternating non-negative constrained

least squares and active set method, as it has been shown to have superior performance in terms

of convergence and implementation [29]. The factorization uses an iterative method and, because

the objective function often has local minima, repeated factorizations may yield di↵erent W and

H matrices. The study showed that in most cases the algorithm converges to solutions of rank

lower than R = 16. This value was the used for extracting NMF-based features. Note that the

decomposition of ⇢
z

x

[n, k] using the NMF requires the matrix to be non-negative, which is not the

case for the TFDs listed in Table 1 except the SPEC. We therefore defined this feature by assigning

zero to the negative values in ⇢
z

x

[n, k] before implementing the NMF algorithm.

The t-domain and f -domain features listed in Table 4 were extracted from x[n] and Z
x

[k] (i.e.

the FT of its analytic associate), respectively.

3.6. Performance evaluation

3.6.1. ROC analysis

The performance of each feature in detecting seizures and artifacts in newborn EEG was eval-

uated by performing a ROC analysis on the values of the feature extracted from EEG segments

belonging to di↵erent states (e.g. seizure and non-seizure). For a given feature, the ROC curve of
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Figure 6: (a) The methodology for evaluating the performance of (t, f) features for detecting seizures in newborn
EEG. For each feature, the ROC analysis is performed and the resulting AUC is used as the performance measure.
(b) A SVM uses a vector containing the selected (t, f) features to detect an abnormal segment.

a binary classifier based on that feature was estimated as its discrimination threshold was varied.

The area under the resulting ROC, i.e. AUC, was computed and used as a summary of the ROC

curve and a measure of how well a feature can discriminate between two groups. All the simula-

tions were carried out in MATLAB. The implementations of QTFDs were obtained from the TFSA

toolbox [35], available at: www.time-frequency.net (also available on Qatar University Qspace or

The University of Queensland Espace).

3.6.1.1. Seizure detection.

Figure 6(a) shows the methodology used in this study for evaluating the performance of (t, f)

features in detecting changes in newborn EEG signals caused by the presence of seizures using

the AUC as the performance criteria. The EEG signals in Database 1 (discussed in Section

3.1) were first inspected visually by an EEG expert to remove highly artifactual segments. At

the pre-processing stage, the signals were band–pass filtered in (0.5� 16) Hz (given that neonatal

EEG seizures have been reported to have spectral activities mostly below 12 Hz [36, 37]) and

down–sampled at 32 Hz (to reduce computational load).

For detecting seizures in newborn EEGs, the signals were combined into one signal by space
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averaging over the various channels using:

x[n] =
1
20

20

X

i=1

eeg
i

[n]· (16)

in order to improve their SNR and enhance the signatures of abnormalities in the (t, f) domain

[13], given that the question of localization was not considered in this study. A selection of 80

non-overlapping seizure segments and 80 non-overlapping non-seizure segments of length 8 seconds

were extracted randomly from 27 min of artifact–free seizure signals and 39 min of artifact–free

non-seizure signals.

3.6.1.2. Artifact detection.

The EEG signals in Database 2 (discussed in Section 3.1) were processed to extract 20 000 single

channel artifact free segments and the same amount of segments contaminated with artifacts from

EEG signals. Each segment has one second duration, as it is the minimum duration of an artifact

in the given database. The selection of one second for the duration of the EEG segments for artifact

detection is also supported by previous studies, e.g. [38, 39, 40].

3.6.2. Classification

In order to evaluate the performance of the (t, f) features and compare it with t- and f -domains

features, three feature vectors: FV
1

= {F
i

}3

i=1

[ {T
i

}5

i=1

(composed of t- and f -domains features),

FV
2

= {TF
i

}8

i=1

(composed of the extended t- and f -domains features), and FV
3

= {TF
i

}17

i=9

(composed of the complementary (t, f) features) were used to train three support vector machines

(SVMs); see Figure 6(b). The features are presented in Tables 3 and 4. The selection of SVMs

is motivated by the fact that they have proven to be well suited for EEG abnormality detection

[41, 42]. The output of the SVM shows the decision taken, e.g. whether the EEG signal x[n] is a
23



seizure or non-seizure.

We used SVMs with radial basis function kernels with scaling factor of 1 to evaluate the overall

detection performance of the features listed in Tables 3 and 4. The performance of the proposed

methodology was evaluated using the standard statistical parameters of the SVM, i.e. its sensitivity

(SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and

total accuracy (ACC). These quantities are defined below.

SEN =
number of true positives

number of true positives + number of false negatives
(17a)

SPE =
number of true negatives

number of true negatives + number of false positives
(17b)

PPV =
number of true positives

number of true negatives + number of false positives
(17c)

NPV =
number of true negatives

number of true negatives + number of false negatives
(17d)

ACC =
number of true positives + number of true negatives

number of positives + number of negatives
(17e)

For the artifact detection experiment, these quality measures were estimated using 10-fold

cross–validation such that the entire database was divided in 10 equal sets. Out of 10 sets, 9 sets

are used for training while 1 set is used for testing. This process is repeated 10 times such that each

set is tested once. The final results are obtained by averaging the results of all the iterations. In the
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seizure detection experiment, due to the relatively small size of the database used, a leave–one–out

cross–validation was used to evaluate the performance of the classifiers.

4. Results and discussions

4.1. Performance evaluation of features using ROC analysis

4.1.1. Seizure detection

All the features listed in Tables 3 and 4 were then extracted from the TFD of x[n]. For each

feature, a ROC analysis was performed and its AUC was calculated. Table 5 shows the AUC

values for the features extracted from di↵erent TFDs. A Student’s t-test was also used to assess

the statistical significance of improvement obtained as a result of extending t-domain or f -domain

features to the joint (t, f) domain and the resulting p-values for (t, f) extended features are shown

inside brackets.

The results show that among di↵erent (t, f) features listed in Table 3, the feature TF
13

, i.e.

the average of the base vectors of ⇢zx extracted from the SWVD, outperforms other features. We

also observe that most of the extended (t, f) features have better performance than their t-domain

or f -domain counterparts. For illustration, box plots of the (t, f) features TF
1

and TF
6

and

their t-domain or f -domain counterparts (i.e. F
1

and T
3

, respectively) for seizure and non-seizure

segments, are shown in Fig. 7. (See Tables 3 and 4 also). The plots show clearly that the (t, f)

features allow for better discrimination between the two classes.

The AUC scores in Table 5 also imply that the selection of the best performing (t, f) features

depends on the type of TFD used for representing the signal x[n] in the (t, f) domain. For example,

if one chooses the SWVD for transforming the signal to the (t, f) domain, then the features TF
8

,

TF
9

, and TF
13

are the best performing ones with AUCs�0.92. The results also suggest that some
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TFD

(t, f) feature,
see Table 3

WVD SWVD CWD SPEC MBD EMBD

original
t- or
f -domain
feature,
see Table
4

TF
1

0.67(0.02) 0.64(0.06) 0.70(0.01) 0.67(0.02) 0.65(0.04) 0.73(0.00) 0.54 (F
1

)
TF

2

0.67(0.02) 0.67(0.02) 0.71(0.00) 0.74(0.00) 0.62(0.10) 0.60(0.17) 0.54 (F
2

)
TF

3

0.79(0.00) 0.85(0.10) 0.80(0.01) 0.85(0.10) 0.88(0.30) 0.52(0.00) 0.90 (F
3

)
TF

4

0.66(0.02) 0.66(0.02) 0.66(0.02) 0.66(0.02) 0.66( 0.02) 0.66(0.02) 0.53 (T
1

)
TF

5

0.64(0.37) 0.62(0.26) 0.61(0.21) 0.61( 0.21) 0.62(0.26) 0.60(0.17) 0.66 (T
2

)
TF

6

0.79(0.00) 0.75(0.00) 0.75(0.00) 0.80(0.00) 0.80(0.00) 0.52(0.44) 0.53 (T
3

)
TF

7

0.79(0.01) 0.78(0.01) 0.77(0.02) 0.79(0.01) 0.79(0.01) 0.51(0.01) 0.65 (T
4

)
TF

8

0.73(0.00) 0.92(0.00) 0.83( 0.00) 0.86(0.00) 0.92(0.00) 0.52(0.44) 0.51 (T
5

)
TF

9

0.52 0.92 0.62 0.70 0.83 0.59

N/A

TF
10

0.51 0.53 0.51 0.57 0.52 0.52
TF

11

0.57 0.55 0.57 0.59 0.55 0.60
TF

12

0.64 0.78 0.83 0.83 0.79 0.83
TF

13

0.89 0.93 0.91 0.90 0.93 0.89
TF

14

0.51 0.53 0.68 0.53 0.52 0.58
TF

15

0.60 0.79 0.83 0.85 0.83 0.83
TF

16

0.54 0.79 0.55 0.69 0.62 0.62
TF

17

0.64 0.54 0.59 0.59 0.57 0.61

Table 5: Result of the ROC analysis of the (t, f), t-domain, and f -domain features for the detection of seizures in
newborn EEG signals. The p-values shown inside brackets are obtained from statistical t-test performed to assess the
statistical significance of improvement achieved in AUC of features as a result of translating t-only or f-only features
to the joint (t, f) domain.

features, e.g. TF
10

(deviation of the IF), fail to show the changes in the signal characteristics and

therefore should not be used in this application, as by definition, it is not a highly discriminating

feature.

4.1.2. Artifact detection

In order to compare the performance of the (t, f) extended features with t-only and f -only

features for the detection of artifacts in newborn EEG signals, the method analyzed the extracted

segments using the TFDs listed in Table 1. The AUC criterion was used to evaluate the performance
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Figure 7: Box plots of four selected features showing the improvement in the discrimination between seizure and
non-seizure segments due to the use of the extended t-domain and f -domain features. Top (left) TF1 extracted
from the EMBD and (right) F1 extracted from the signal’s spectrum for seizure and non-seizure segments, bottom
(left) TF6 extracted from the MBD and (right) T3 extracted from the signal’s t-domain representation for seizure
and non-seizure segments. Note that TF1 is the extended version of F1 and TF6 is the extended version of T3. (On
each box, the central mark is the median, the edges are the 25th and 75th percentiles and whiskers extend to the most
extreme data points the algorithm considers to be not outliers. Outliers are represented individually by +.)

of all the features. The AUC value for the extracted features are given in Table 6.

The results indicate that (t, f) extended features give better performance as compared to the

corresponding t-domain or f -domain features. A Student’s t-test is also applied to assess the

statistical significance of the AUC improvement obtained as a result of extending t-domain or

f -domain features to the joint (t, f) domain [42]. The resulting p-values for the (t, f) extended

features are shown inside brackets. The experimental results indicate that in most cases, p-values

are less than 0.05 which indicates that the improvement in the AUC vales is statistically significant

(see e.g. features TF
5

and TF
6

). The results also indicate that the best features come from some

of the complementary (t, f) features such as TF
9

and TF
14

which are inherently (t, f) features
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TFD

(t, f) fea-

ture, see
Table 3

WVD SWVD CWD SPEC MBD EMBD

original
t- or
f -domain
feature,
see Table
4

TF
1

0.51(0.00) 0.51(0.00) 0.51(0.00) 0.51(0.00) 0.51(0.02) 0.51(0.02) 0.50(F
1

)
TF

2

0.52(0.00) 0.51(0.02) 0.51(0.02) 0.50(1) 0.51(0.02) 0.50(1) 0.50 (F
2

)
TF

3

0.53(0.00) 0.56(0.00) 0.55(0.00) 0.55(0.00) 0.56(0.00) 0.53(0.00) 0.50 (F
3

)
TF

4

0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.51 (T
1

)
TF

5

0.54(0.00) 0.54(0.00) 0.54(0.00) 0.54(0.00) 0.54(0.00) 0.54(0.00) 0.51 (T
2

)
TF

6

0.55(0.02) 0.55(0.02) 0.55(0.02) 0.55(0.02) 0.55(0.02) 0.55(0.02) 0.54 (T
3

)
TF

7

0.55(0.02) 0.55(0.02) 0.55(0.02) 0.55(0.02) 0.55(0.02) 0.55(0.02) 0.54 (T
4

)
TF

8

0.51(0.02) 0.51(0.02) 0.50(1) 0.51(0.02) 0.51(0.02) 0.51(0.02) 0.50 (T
5

)
TF

9

0.51 0.52 0.52 0.52 0.52 0.72

N/A

TF
10

0.54 0.51 0.51 0.51 0.51 0.51
TF

11

0.51 0.51 0.51 0.51 0.51 0.51
TF

12

0.54 0.50 0.50 0.51 0.50 0.51
TF

13

0.55 0.56 0.56 0.56 0.56 0.56
TF

14

0.50 0.63 0.62 0.62 0.63 0.61
TF

15

0.52 0.56 0.56 0.56 0.56 0.56
TF

16

0.53 0.60 0.61 0.61 0.56 0.60
TF

17

0.51 0.53 0.53 0.53 0.53 0.53

Table 6: Result of the ROC analysis of the (t, f), t-domain, and f -domain features for the detection of artifacts in
newborn EEG signals. The p-values shown inside brackets are obtained from statistical t-test performed to assess the
statistical significance of improvement achieved in AUC of features as a result of translating t-only or f-only features
to the joint (t, f) domain.

and do not have an obvious direct and meaningful correspondent t-only or f -only feature. This

improved performance appears to result from the ability of TFDs to better take into account the

non-stationary nature of EEG signals. It is however noted that both (t, f) extended features and

their t-only or f -only counterparts fail to give good performance. This may be explained by the

large variability in type of artifacts. These results are su�ciently encouraging to warrant further

research in this area.
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4.2. SVM-based decision making

4.2.1. Seizure detection

Table 7 shows the values of the statistical parameters of the SVM-based detector used for

detecting newborn EEG seizures for the di↵erent feature vectors listed in Table 7 and for di↵erent

TFDs. The results obtained indicate that the SVM which uses the combined feature vector FV
1

composed of the t- and f -domains features, has a total accuracy of 86.88%. This is mainly due to

the presence of the signal power and its spectral entropy (i.e. T
2

and F
3

respectively) in the feature

vector; the features which are very discriminative between seizure and non-seizure classes [44]. But,

as expected, the use of the combined (t, f) feature set FV
2

composed of the extended t-domain and

f -domain features results in a better performance (up to 7% higher total accuracy) compared to

FV
1

. The results also indicate that the best performing classifier shows a total accuracy of 93.75%

and high SEN and SPE, and it uses the (t, f) feature vector FV
2

extracted from the SWVD of

EEG signals. On the other hand, we observe that the performance of the classifier which uses FV
2

extracted from the EMBD of EEG signals is much lower than that of the one which uses FV
1

. This

suggests the need for a data–adapted TFD kernel selection and optimization of its parameters to

the dataset.

In addition, t-tests were performed on the values of the classifiers’ total accuracies for di↵erent

subjects to test the statistical significance of the improvement achieved as a result of using (t, f)

features instead of t-only or f -only features. The high scores for the resulting p-values, even when

the total accuracies are very di↵erent, is due to the fact that the size of the database is not large

enough (i.e. only 5 subjects) to allow the null hypothesis to be rejected at the 0.05 level.
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SVM statistical parameters (%)

feature vector TFD SEN SPE PPV NPV ACC
t- and f -domains features,
FV

1

= {F
i

}3

i=1

[ {T
i

}5

i=1

N/A 92.50 81.25 85.07 92.58 86.88

(t, f) extended t- and
f -domains features,
FV

2

= {TF
i

}8

i=1

WVD 83.75 92.50 92.50 86.35 88.13(0.7608)
SWVD 95.00 92.50 93.24 95.19 93.75(0.0551)
CWD 86.25 97.50 97.57 89.30 91.88(0.2701)
SPEC 86.25 95.00 95.42 89.42 90.63(0.4169)
MBD 91.25 91.25 92.09 92.06 91.25(0.1995)

EMBD 57.50 76.25 66.77 67.62 66.88(0.0344)

complementary (t, f)
features, FV

3

= {TF
i

}17

i=9

WVD 86.25 83.75 84.23 87.93 85.00
SWVD 93.75 90.00 91.67 94.62 91.88
CWD 95.00 90.00 91.46 95.67 92.50
SPEC 93.75 92.50 92.92 94.09 93.13
MBD 93.75 87.50 89.68 94.62 90.63

EMBD 98.75 76.25 82.02 98.33 87.50

Table 7: Newborn EEG seizure detection results using SVMs trained with the (t, f), t-domain, and f -domain features
(see Tables 3 and 4 for the list of features). The p-values shown inside brackets are obtained from statistical t-test
performed to assess the statistical significance of improvement achieved in the total accuracy of SVM based classifier
when the feature vector composed of (t, f) extended features is used instead of feature vector composed of t-only or
f-only features.

4.2.2. Artifact detection

Table 8 shows the artifact detection results of the SVM-based detector trained with the set of

(t, f) extended features and the combined set of the corresponding t-only and f -only features. The

results indicate that the SVM trained using (t, f) features give better classification performance as

compared to the SVM trained using the combined set of the corresponding t-domain and f -domain

features; e.g. the set of non (t, f) features using SVM classifier achieves the total accuracy of

65.68%, whereas the (t, f) features extracted from the WVD achieve the total accuracy of 70.85%.

A Student’s t-test was performed to test the statistical significance of the improvement in total

accuracy obtained as a result of using (t, f) features instead of t-only or f -only features [43]. The

resulting p-values, shown in brackets, indicate that, except for the features extracted from the

SPEC and SWVD, the improvement achieved in the overall performance is in general statistically

significant.
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SVM statistical parameters (%)

feature vector TFD SEN SPE PPV NPV ACC
t- and f -domains features,
FV

1

= {F
i

}3

i=1

[ {T
i

}5

i=1

N/A 54.49 76.87 70.22 66.93 65.68

(t, f) extended t- and
f -domains features,
FV

2

= {TF
i

}8

i=1

WVD 53.53 88.18 81.94 70.86 70.85(0.0010)
SWVD 57.02 76.58 70.91 70.00 66.80(0.3072)
CWD 52.33 87.92 81.24 70.12 70.12(0.0014)
SPEC 55.09 78.57 72.04 69.35 66.83(0.2705)
MBD 51.88 87.09 80.07 69.66 69.49(0.0018)

EMBD 54.38 86.76 80.41 71.01 70.57(0.0013)

complementary (t, f)
features, FV

3

= {TF
i

}17

i=9

WVD 54.89 78.28 71.62 70.50 66.58
SWVD 48.38 77.56 68.36 66.40 62.97
CWD 53.65 77.04 70.01 69.36 65.34
SPEC 51.21 77.34 69.32 67.99 64.28
MBD 51.40 78.28 70.31 68.18 64.84

EMBD 58.04 81.49 75.82 73.14 69.76

Table 8: Newborn EEG artifact detection results using SVMs trained with the (t, f), t-domain, and f -domain features
(see Tables 3 and 4 for the list of features). The p-values shown inside brackets are obtained from statistical t-test
performed to assess the statistical significance of improvement achieved in the total accuracy of SVM based classifier
when the feature vector composed of (t, f) extended features is used instead of feature vector composed of t-only or
f-only features.

5. Conclusions

The importance of detecting changes in newborn EEG signals can be a matter of life and death,

or, a life with a major handicap. The same situation occurs in many other applications (nuclear

plants fault detection, tsunami early warning systems, etc) where a change could be catastrophic

if not detected early enough. This paper presents a methodology for identifying such changes in

an objective manner, taking into account the non-stationary characteristic of such signals. The

approach to abnormal change detection involves the extraction and selection of features observed

in the (t, f) domain. For this purpose, a methodology was defined that extends time only features

and frequency only features to new (t, f) features.

A ROC analysis was used for the performance evaluation of the (t, f) features selected for the

detection of changes in EEG signals, caused by abnormalities and artifacts. The results obtained

indicate that generally, the (t, f) extended features give better results for the detection of seizures
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and artifacts in EEG signals as compared to the corresponding time-only or frequency-only features.

Also, the EEG seizure detection results using SVM-based classifiers show that the use of the feature

vector composed of the extended t- and f -domains features can result in 7% improvement compared

to the feature vector composed of only t-domain and f -domain features. An improvement of 5% in

terms of the total accuracy of the artifact detection algorithm is obtained when the feature vector

composed of (t, f) extended features is used instead of the feature vector composed of time-only

and frequency-only features.

For a particular application, the performance of (t, f) features depends on the type of TFD and

no single TFD is the best for the extraction of all (t, f) features. This suggests that a more refined

approach for (t, f) based change detection could be adopted where a separate TFD may be used

to extract each feature. The computational load of this approach can be significantly reduced by

using more computationally e�cient algorithms for implementing TFDs (e.g. [1]). In addition, it

may be possible to further improve detection results by optimizing the parameters of TFD kernels

directly for classification instead of focusing on (t, f) resolution.
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