5 research outputs found

    Evaluation of Antidiabetic Potential of Mangifera indica Leaf in Streptozotocin-Induced Type 2 Diabetic Rats: Focus on Glycemic Control and Cholesterol Regulation

    Get PDF
    Mangifera indica (Anacardiaceae family) is renowned for its diverse pharmacological properties, encompassing antidiabetic, antioxidant, and anti-inflammatory effects. The present study delves into the insulin-releasing and glucose-lowering potential of the ethanolic extract of Mangifera indica (EEMI) leaves in streptozotocin-induced type 2 diabetic (STZ-T2D) rats, concurrently investigating its phytoconstituents. EEMI’s effects on insulin secretion were measured using BRIN BD11 β-cells and isolated mouse islets. Its enzymatic inhibitory properties on carbohydrate digestion, and absorption, and free radicals were investigated using in vitro methods. In vivo parameters including the lipid profile and liver glycogen content were assessed in STZ-T2D rats. EEMI exhibited a dose-dependent increase in insulin secretion from clonal pancreatic BRIN BD11 β-cells and isolated mouse islets. EEMI inhibited starch digestion, glucose diffusion over time, and DPPH activity in vitro. In acute in vivo studies, EEMI improved food intake and oral glucose tolerance. Moreover, following 28 days of treatment with EEMI, a remarkable amelioration in body weight, fasting blood glucose, plasma insulin, liver glycogen content, total cholesterol, triglyceride, LDL, VLDL, and HDL levels was observed. Further phytochemical analysis with EEMI identified the presence of alkaloids, tannins, saponins, steroids, and flavonoids. The synergistic effects of EEMI, potentially attributable to naturally occurring phytoconstituents, hold promise for the development of enriched antidiabetic therapies, offering a promising avenue for the management of type 2 diabetes

    Insulin secretory actions of polyphenols of <i>Momordica charantia</i> regulate glucose homeostasis in alloxan-induced type 2 diabetic rats

    Get PDF
    Objective Momordica charantia, commonly known as bitter gourd, is traditionally used as remedies for various diseases including diabetes. The main objective of this study is to investigate the in vitro and in vivo insulinotropic and anti-diabetic effects of an 80% ethanolic extract of Momordica charantia (EEMC) fruit, as well as the underlying molecular mechanism involved and preliminary phytochemical screening. Methods The insulin secretion was measured using clonal pancreatic BRIN-BD11 β-cells and isolated mouse islets. The ability of EEMC to inhibit carbohydrate digestive enzymes and glucose absorption and, scavenge free radicals were assessed via starch digestion, glucose diffusion and DPPH assay methods. The effects of EEMC on a variety of metabolic parameters were evaluated in alloxan-induced type 2 diabetic rats, including lipid profile. Finally, a preliminary phytochemical screening was conducted to identify the active phytoconstituents. Key findings EEMC increased insulin release through the KATP-dependent/cAMP pathway, which depolarizes the β-cell membrane and elevates intracellular calcium. It also inhibited glucose absorption and free radicals, suggesting its potential to delay gastric emptying, attenuate oxidative stress, and reduce inflammatory cytokines. In vivo studies showed that EEMC improves oral glucose tolerance, food intake, fasting blood glucose, plasma insulin, lipids, and promotes intestinal motility. The active phytoconstituents in EEMC, such as flavonoids, alkaloids, tannins, saponins, steroids, and glycosides, are likely responsible for these effects. Conclusion The antihyperglycemic properties of EEMC indicate that it might be a promising candidate for diabetes management. However, additional study into the application of Momordica charantia in type 2 diabetes is essential

    Hyperglycaemia-linked diabetic foot complications and their management using conventional and alternative therapies

    Get PDF
    Diabetes mellitus, a major cause of mortality around the globe, can result in several secondary complications, including diabetic foot syndrome, which is brought on by diabetic neuropathy and ischemia. Approximately 15% of diabetic patients suffer from diabetic foot complications, and among them 25% are at risk of lower limb amputations. Diabetic foot ulcers are characterized as skin lesions, gangrene, or necrosis, and may develop due to several reasons, including hyperglycemia and slower wound healing in diabetic patients. A management protocol involving wound cleaning, oral antibiotics, skin ointments, and removing dead tissue is currently followed to treat diabetic foot ulcers. In severe cases, amputation is performed to prevent the infection from spreading further. The existing therapy can be costly and present adverse side effects. Combined with a lack of vascular surgeons, this ultimately results in disability, especially in developing nations. There is a growing interest in the use of alternative therapies, such as medicinal plants, to discover more efficient and affordable treatments for diabetic foot syndrome. It has been observed that treatment with numerous plants, including Carica papaya, Annona squamosa, Catharanthus roseus, and Centella asiatica, promotes wound healing, reduces inflammation, and may decrease the number of amputations. However, little information is currently available on the prevention and management of diabetic foot ulcers, and additional research is necessary to completely understand the role of alternative therapies in the treatment of diabetic foot complications

    Protective effects of medicinal plant-based foods against diabetes : a review on pharmacology, phytochemistry, and molecular mechanisms

    Get PDF
    Diabetes mellitus (DM) comprises a range of metabolic disorders characterized by high blood glucose levels caused by defects in insulin release, insulin action, or both. DM is a widespread condition that affects a substantial portion of the global population, causing high morbidity and mortality rates. The prevalence of this major public health crisis is predicted to increase in the forthcoming years. Although several drugs are available to manage DM, these are associated with adverse side effects, which limits their use. In underdeveloped countries, where such drugs are often costly and not widely available, many people continue to rely on alternative traditional medicine, including medicinal plants. The latter serves as a source of primary healthcare and plant-based foods in many low- and middle-income countries. Interestingly, many of the phytochemicals they contain have been demonstrated to possess antidiabetic activity such as lowering blood glucose levels, stimulating insulin secretion, and alleviating diabetic complications. Therefore, such plants may provide protective effects that could be used in the management of DM. The purpose of this article was to review the medicinal plant-based foods traditionally used for the management of DM, including their therapeutic effects, pharmacologically active phytoconstituents, and antidiabetic mode of action at the molecular level. It also presents future avenues for research in this field
    corecore