110 research outputs found

    Mapping Glacier Ablation With a UAV in the North Cascades: A Structure-from-Motion Approach

    Get PDF
    The glaciers of the North Cascades have experienced mass loss and terminus retreat due to climate change. The meltwater from these glaciers provides a flux of cold glacier meltwater into the river systems, which supports salmon spawning during the late summer dry season. The Nooksack Indian Tribe monitors the outlet flow of the Sholes Glacier within the North Cascades range with the goal of understanding the health of the glacier and the ability of the Tribe to continue to harvest sustainable populations of salmon. This study compares the UAV derived glacier ablation with the discharge data collected by the Tribe. We surveyed the Sholes Glacier twice throughout the 2020 melt season and, using Structure-from-Motion technology, generated high resolution multispectral orthomosaics and Digital Elevation Models (DEMs) of the glacier on each of the survey dates. The DEMs were differenced to reveal the surface height change of the glacier. The spectral data of the orthomosaics were used to conduct IsoData unsupervised classification. This process divided the survey area into Snow, Ice, and Rock classes that were then used to attribute the surface height changes of the DEMs to either snow or ice melt. The analysis revealed the glacier lost an average thickness of −0.132 m per day (m d−1) with snow and ice losing thickness at similar rates, −0.130 m d−1 and −0.132 m d−1 respectively. DEM differencing reveals that a total of −550,161 ± 45,206 m3 water equivalent (w.e.) was discharged into Wells Creek between the survey dates whereas the stream gauge station measured a total discharge of 350,023 m3. This study demonstrates the ability to spectrally classify the UAV data and derive discharge measurements while evaluating the small-scale spatial variability of glacier melt. Assessing ablation in small alpine glaciers is of great importance to downstream communities, like the Nooksack Indian Tribe who seek to understand the magnitude and timing of glacier melt in order to better protect their salmon populations. With this paper, we provide a baseline for future glacier monitoring and the potential to connect the snow surface properties with the rate of snow melt into a warming future

    "I like the way the skin looks": Player perspectives on aesthetic appeal and self-representation with video game "Skins"

    Get PDF
    Microtransactions are the purchasing of in-game items in video games, often using real money. Through microtransactions, game players can obtain a type of cosmetic called 'skins' that change the physical appearance of playable characters. Considering the default 'skin' in many games is that of a white male, there are various psychosocial and economic costs that may be extended to players of color when attempting to select skins for their avatars. To examine how players of different racial and ethnic backgrounds interact with 'skins,' and the additional costs associated with them, we conducted a survey asking participants about their spending patterns with 'skins' and reasons for choosing certain 'skins' over others. The most common response from participants when asked why they select their skins was 'because I like the way the skin looks.' As this statement is broad, we delve into other results from our survey and previous studies by other scholars to analyze what this response may be able to tell us about players who selected this as their answer

    Under-Ice Light Field in the Western Arctic Ocean During Late Summer

    Get PDF
    The Arctic is no longer a region dominated by thick multi-year ice (MYI), but by thinner, more dynamic, first-year-ice (FYI). This shift towards a seasonal ice cover has consequences for the under-ice light field, as sea-ice and its snow cover are a major factor influencing radiative transfer and thus, biological activity within- and under the ice. This work describes in situ measurements of light transmission through different types of sea-ice (MYI and FYI) performed during two expeditions to the Chukchi sea in August 2018 and 2019, as well as a simple characterisation of the biological state of the ice microbial system. Our analysis shows that, in late summer, two different states of FYI exist in this region: 1) FYI in an enhanced state of decay, and 2) robust FYI, more likely to survive the melt season. The two FYI types have different average ice thicknesses: 0.74 ± 0.07 m (N = 9) and 0.93 ± 0.11 m (N = 9), different average values of transmittance: 0.15 ± 0.04 compared to 0.09 ± 0.02, and different ice extinction coefficients: 1.49 ± 0.28 and 1.12 ± 0.19 m−1. The measurements performed over MYI present different characteristics with a higher average ice thickness of 1.56 ± 0.12 m, lower transmittance (0.05 ± 0.01) with ice extinction coefficients of 1.24 ± 0.26 m−1 (N = 12). All ice types show consistently low salinity, chlorophyll a concentrations and nutrients, which may be linked to the timing of the measurements and the flushing of melt-water through the ice. With continued Arctic warming, the summer ice will continue to retreat, and the decayed variant of FYI, with a higher scattering of light, but a reduced thickness, leading to an overall higher light transmittance, may become a more relevant ice type. Our results suggest that in this scenario, more light would reach the ice interior and the upper-ocean

    Algae drive enhanced darkening of bare ice on the Greenland ice sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of non-algal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere

    Black carbon in the Southern Andean snowpack

    Get PDF
    The Andean snowpack is an important source of water for many communities. As other snow-covered regions around the world, the Andes are sensitive to black carbon (BC) deposition from fossil fuel and biomass combustion. BC darkens the snow surface, reduces the albedo, and accelerates melting. Here, we report on measurements of the BC content conducted by using the meltwater filtration (MF) technique in snow samples collected across a transect of more than 2500 km from the mid-latitude Andes to the southern tip of South America. Addressing some of the key knowledge gaps regarding the effects of the BC deposition on the Andean snow, we identified BC-impacted areas, assessed the BC-related albedo reduction, and estimated the resulting snow losses. We found that BC concentrations in our samples generally ranged from 2 to 15 ng g-1, except for the nearly BC-free Patagonian Icefields and for the BC-impacted sites nearby Santiago (a metropolis of 6 million inhabitants). We estimate that the seasonal snowpack shrinking attributable to the BC deposition ranges from 4 mm water equivalent (w.e.) at relatively clean sites in Patagonia to 241 mm w.e. at heavily impacted sites close to Santiago. © 2022 The Author(s). Published by IOP Publishing Ltd

    Black carbon in the Southern Andean snowpack

    Get PDF
    The Andean snowpack is an important source of water for many communities. As other snow-covered regions around the world, the Andes are sensitive to black carbon (BC) deposition from fossil fuel and biomass combustion. BC darkens the snow surface, reduces the albedo, and accelerates melting. Here, we report on measurements of the BC content conducted by using the meltwater filtration (MF) technique in snow samples collected across a transect of more than 2500 km from the mid-latitude Andes to the southern tip of South America. Addressing some of the key knowledge gaps regarding the effects of the BC deposition on the Andean snow, we identified BC-impacted areas, assessed the BC-related albedo reduction, and estimated the resulting snow losses. We found that BC concentrations in our samples generally ranged from 2 to 15 ng g-1, except for the nearly BC-free Patagonian Icefields and for the BC-impacted sites nearby Santiago (a metropolis of 6 million inhabitants). We estimate that the seasonal snowpack shrinking attributable to the BC deposition ranges from 4 mm water equivalent (w.e.) at relatively clean sites in Patagonia to 241 mm w.e. at heavily impacted sites close to Santiago. © 2022 The Author(s). Published by IOP Publishing Ltd

    Black carbon footprint of human presence in Antarctica

    Full text link
    Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer
    • …
    corecore