99 research outputs found

    Percutaneous pulmonary valve implantation in humans - Results in 59 consecutive patients

    Get PDF
    Background - Right ventricular outflow tract (RVOT) reconstruction with valved conduits in infancy and childhood leads to reintervention for pulmonary regurgitation and stenosis in later life.Methods and Results - Patients with pulmonary regurgitation with or without stenosis after repair of congenital heart disease had percutaneous pulmonary valve implantation (PPVI). Mortality, hemodynamic improvement, freedom from explantation, and subjective and objective changes in exercise tolerance were end points. PPVI was performed successfully in 58 patients, 32 male, with a median age of 16 years and median weight of 56 kg. The majority had a variant of tetralogy of Fallot (n = 36), or transposition of the great arteries, ventricular septal defect with pulmonary stenosis (n = 8). The right ventricular (RV) pressure (64.4 +/- 17.2 to 50.4 +/- 14 mm Hg, P < 0.001), RVOT gradient (33 +/- 24.6 to 19.5 +/- 15.3, P < 0.001), and pulmonary regurgitation ( PR) (grade 2 of greater before, none greater than grade 2 after, P < 0.001) decreased significantly after PPVI. MRI showed significant reduction in PR fraction (21 +/- 13% versus 3 +/- 4%, P < 0.001) and in RV end-diastolic volume (EDV) (94 +/- 28 versus 82 +/- 24 mL (.) beat(-1) (.) m(-2), P < 0.001) and a significant increase in left ventricular EDV ( 64 +/- 12 versus 71 +/- 13 mL (.) beat(-1.) m(-2), P = 0.005) and effective RV stroke volume ( 37 +/- 7 versus 42 +/- 9 mL (.) beat(-1) (.) m(-2), P = 0.006) in 28 patients (age 19 +/- 8 years). A further 16 subjects, on metabolic exercise testing, showed significant improvement in V(O2)max (26 +/- 7 versus 29 +/- 6 mL (.) kg(-1) (.) min(-1), P < 0.001). There was no mortality.Conclusions - PPVI is feasible at low risk, with quantifiable improvement in MRI-defined ventricular parameters and pulmonary regurgitation, and results in subjective and objective improvement in exercise capacity

    An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology

    Get PDF
    OBJECTIVE: Modeling of single-ventricle circulations has yielded important insights into their unique flow dynamics and physiology. Here we translated a state-of-the-art mathematical model into a patient-specific clinical decision support interactive Web-based simulation tool and show validation for all 3 stages of single-ventricular palliation. METHODS: Via the adoption a validated lumped parameter method, complete cardiovascular-pulmonary circulatory models of all 3 stages of single-ventricle physiology were created within a simulation tool. The closed-loop univentricular heart model includes scaling for growth and respiratory effects, and typical patient-specific parameters are entered through an intuitive user interface. The effects of medical or surgical interventions can be simulated and compared. To validate the simulator, patient parameters were collected from catheterization reports. Four simulator outputs were compared against catheterization findings: pulmonary to systemic flow ratio (Qp:Qs), systemic arterial saturation (SaO2), mean pulmonary arterial pressure (mPAp), and systemic–venous oxygen difference (SaO2–SvO2). RESULTS: Data from 60 reports were used. Compared with the clinical values, the simulator results were not significantly different in mean Qp:Qs, SaO2, or mPAp (P > .09). There was a statistical but clinically insignificant difference in average SaO–SvO2 (average difference 1%, P < .01). Linear regression analyses revealed a good prediction for each variable (Qp:Qs, R2 = 0.79; SaO2, R2 = 0.64; mPAp, R2 = 0.69; SaO2–SvO2, R2 = 0.93). CONCLUSIONS: This simulator responds quickly and predicts patient-specific hemodynamics with good clinical accuracy. By predicting postoperative and postintervention hemodynamics in all 3 stages of single-ventricle physiology, the simulator could assist in clinical decision-making, training, and consultation. Continuing model refinement and validation will further its application to the bedside

    Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial

    Get PDF
    BACKGROUND: Irbesartan, a long acting selective angiotensin-1 receptor inhibitor, in Marfan syndrome might reduce aortic dilatation, which is associated with dissection and rupture. We aimed to determine the effects of irbesartan on the rate of aortic dilatation in children and adults with Marfan syndrome. METHODS: We did a placebo-controlled, double-blind randomised trial at 22 centres in the UK. Individuals aged 6-40 years with clinically confirmed Marfan syndrome were eligible for inclusion. Study participants were all given 75 mg open label irbesartan once daily, then randomly assigned to 150 mg of irbesartan (increased to 300 mg as tolerated) or matching placebo. Aortic diameter was measured by echocardiography at baseline and then annually. All images were analysed by a core laboratory blinded to treatment allocation. The primary endpoint was the rate of aortic root dilatation. This trial is registered with ISRCTN, number ISRCTN90011794. FINDINGS: Between March 14, 2012, and May 1, 2015, 192 participants were recruited and randomly assigned to irbesartan (n=104) or placebo (n=88), and all were followed for up to 5 years. Median age at recruitment was 18 years (IQR 12-28), 99 (52%) were female, mean blood pressure was 110/65 mm Hg (SDs 16 and 12), and 108 (56%) were taking β blockers. Mean baseline aortic root diameter was 34·4 mm in the irbesartan group (SD 5·8) and placebo group (5·5). The mean rate of aortic root dilatation was 0·53 mm per year (95% CI 0·39 to 0·67) in the irbesartan group compared with 0·74 mm per year (0·60 to 0·89) in the placebo group, with a difference in means of -0·22 mm per year (-0·41 to -0·02, p=0·030). The rate of change in aortic Z score was also reduced by irbesartan (difference in means -0·10 per year, 95% CI -0·19 to -0·01, p=0·035). Irbesartan was well tolerated with no observed differences in rates of serious adverse events. INTERPRETATION: Irbesartan is associated with a reduction in the rate of aortic dilatation in children and young adults with Marfan syndrome and could reduce the incidence of aortic complications

    Low switching frequency and high dynamic pulsewidth modulation based on field-orientation for high-power inverter drive

    No full text

    Enhancement and laboratory implementation of neural network detection of short circuit faults in DC transit system

    No full text
    10.1049/ip-epa:20030308IEE Proceedings: Electric Power Applications1503344-350IEPA

    Dynamic torque control performance of the Direct Flux Control scheme in field weakening range

    No full text
    10.1109/IECON.2003.1279983IECON Proceedings (Industrial Electronics Conference)1220-225IEPR

    Dynamic control of torque in overmodulation and in the field weakening region

    No full text
    10.1109/TPEL.2006.876823IEEE Transactions on Power Electronics2141091-1098ITPE

    Fast, accurate and stable simulation of power electronic systems using virtual resistors and capacitors

    No full text
    10.1049/ip-epa:20020498IEE Proceedings: Electric Power Applications1495385-394IEPA

    Predictive stator flux control with overmodulation and dynamic torque control at constant switching frequency in AC drives

    No full text
    10.1109/IAS.2002.1043818Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)32080-2085CIAS
    corecore