140 research outputs found

    A novel equivalent definition of modified Bessel functions for performance analysis of multi-hop wireless communication systems

    Get PDF
    A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-fading. The probability density function and the cumulated density function of the S-R-D link SNR involve modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying scenario in which the destination receives signals from both the relay and the source and processes them using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the destination, accurate and simple analytical expressions for the outage probability, the bit error probability, and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical framework to analyze the performance of the AF cooperative systems with an MRC receiver

    Holographic Beamforming

    Get PDF
    This chapter presents the fundamentals of the holography technique to form the beam in electromagnetic (EM) structures. The application of holography in leaky-wave antennas, metasurface reflectors, and reconfigurable intelligent surfaces (RISs) is explained. Consequently, different methods to analyze and realize an EM hologram are presented. A comparison is made between forming the beam via holographic-based radiators, phased-array antennas, and MIMO systems. The thing which is common between these three is that all of them can contain a number of elements that are repeated in a fashion. However, the functionality of these elements in the three mentioned structures is totally different from each other. This concept is explained in detail in this chapter

    Beam broadened radial line slot array antenna for fifth generation (5g) mobile broadband communication

    Get PDF
    Radial line slot array antenna with broad beam is easily realized at frequencies in the lower part of super high frequency band. But emerging broadband mobile communication systems like the fifth generation target frequencies in the upper part of the band and beyond. Therefore, this paper presents the design of beam broadened radial line slot array antenna at 28 GHz for fifth generation broadband mobile communication system. Surface slot distribution synthesis was carried on beam squinted standard single layer radial line slot array design to achieve the broad beam. Using computer simulation technology microwave studio 2014 software, 85 mm radius antenna having polypropylene (ɛr = 2.33) as cavity material was realized. Simulated results shows a gain of 15.8 dB, impedance bandwidth of 1.6 GHz, radiation efficiency of 96 % and 3 dB half power beamwidth of up to 32.3o

    Bandwidth Enhancement and Radiation Characteristics Improvement of Triangular Dielectric Resonator Antenna

    Get PDF
    In this paper, an ultra-wideband, Dielectric Resonator Antenna (DRA) has been proposed. The proposed antenna is based on isosceles triangular DRA (TDRA), which is fed from the base side using a 50Ω probe. For bandwidth enhancement and radiation characteristics improvement, a partially cylindrical-shape hole is etched from its base side which approached probe feed to the center of TDRA. The dielectric resonator (DR) is located over an extended conducting ground plane. This technique has significantly enhanced antennas bandwidth from 48.8% to 80% (5.29-12.35 GHz), while the biggest problem was radiation characteristics. The basis antenna possesses negative gain in a wide range of bandwidth from 7.5 GHz to 10.5 GHz down to -13.8 dBi. Using this technique improve antenna gain over 1.6 dBi for whole bandwidth, while peak gain is 7.2 dBi

    Resource Allocations for Symbiotic Radio with Finite Block Length Backscatter Link

    Get PDF
    This paper exploits a generic downlink symbiotic radio (SR) system, where a Base Station (BS) establishes a direct (primary) link with a receiver having an integrated backscatter device (BD). In order to accurately measure the backscatter link, the backscattered signal packets are designed to have finite block length. As such, the backscatter link in this SR system employs the finite block-length channel codes. According to different types of the backscatter symbol period and transmission rate, we investigate the non-cooperative and cooperative SR (i.e., NSR and CSR) systems, and derive their average achievable rate of the direct and backscatter links, respectively. We formulate two optimization problems, i.e., transmit power minimization and energy efficiency maximization. Due to the non-convex property of these formulated optimization problems, the semidefinite programming (SDP) relaxation and the successive convex approximation (SCA) are considered to design the transmit beamforming vector. Moreover, a low-complexity transmit beamforming structure is constructed to reduce the computational complexity of the SDP relaxed solution. Finally, the simulation results are demonstrated to validate the proposed schemes

    Low-Complexity and Robust Hybrid Beamforming Design for Multi-Antenna Communication Systems

    Get PDF
    This paper proposes a low-complexity hybrid beamforming design for multi-antenna communication systems. The hybrid beamformer is comprised of a baseband digital beamformer and a constant modulus analog beamformer in the radio frequency (RF) part of the system. As in singular-value-decomposition (SVD)-based beamforming, hybrid beamforming design aims to generate parallel data streams in multi-antenna systems, however, due to the constant modulus constraint of the analog beamformer, the problem cannot be solved similarly. To address this problem, mathematical expressions of the parallel data streams are derived in this paper and desired and interfering signals are specified per stream. The analog beamformers are designed by maximizing the power of desired signal while minimizing the sum-power of interfering signals. Finally, digital beamformers are derived by defining the equivalent channel observed by the transmitter/receiver. Regardless of the number of the antennas or type of channel, the proposed approach can be applied to a wide range of MIMO systems with hybrid structure wherein the number of the antennas is more than the number of the RF chains. In particular, the proposed algorithm is verified for sparse channels that emulate mm-wave transmission as well as rich scattering environments. In order to validate the optimality, the results are compared with those of the state-of-the-art and it is demonstrated that the performance of the proposed method outperforms state-of-the-art techniques, regardless of type of the channel and/or system configuration

    New approach to suppress mutual coupling between longitudinal-slotted arrays based on SIW antenna loaded with metal-fences working on VHF/UHF frequency-bands: study, investigation, and principle (conference paper : Asia-Pacific Microwave Conference)

    Get PDF
    In this work it is demonstrated that substrate integrated waveguide longitudinal slotted array antenna (SIWLSAA) which is loaded with metal fences exhibits high-isolation across VHF/UHF bands. A reference SIWLSAA used for comparison purpose comprises of 3×6 slotted arrays constructed on the top and bottom sides of the FR-4 lossy substrate has maximum isolation of -63 dB between its radiation slots. Improvement in isolation is demonstrated using a simple new technique based on inserting a metal fence between each row of slot arrays. The resulting isolation is shown to be is better than -83 dB across 200 MHz to 1.0 GHz with gain greater than 1.5 dBi, and side-lobe level less than -40 dB. The proposed SIWLSAA is compact and has dimensions of 40×10×5 mm3 (0.026λx0.006λx0.002λ) where λ is 200 MHz. The proposed structure should find application in multiple-input multiple-output (MIMO) and radar systems

    Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading

    Get PDF
    An approach is proposed to reduce mutual coupling between two closely spaced radiating elements. This is achieved by inserting a fractal isolator between the radiating elements. The fractal isolator is an electromagnetic bandgap structure based on metamaterial. With this technique, the gap between radiators is reduced to ∼0.65λ for the reduction in the mutual coupling of up to 37, 21, 20, and 31 dB in the X-, Ku-, K-, and Ka-bands, respectively. With the proposed technique, the two-element antenna is shown to operate over a wide frequency range, i.e., 8.7–11.7, 11.9–14.6, 15.6–17.1, 22–26, and 29–34.2 GHz. Maximum gain improvement is 71% with no deterioration in the radiation patterns. The antenna’s characteristics were validated through measurement. The proposed technique can be applied retrospectively and is applicable in closely placed patch antennas in arrays found in multiple-input multiple-output and radar systems
    corecore