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ABSTRACT A statistical model is derived for the equivalent signal-to-noise ratio of the Source-to-Relay-to-
Destination (S-R-D) link for Amplify-and-Forward (AF) relaying systems that are subject to block Rayleigh-
fading. The probability density function and the cumulated density function of the S-R-D link SNR involve
modified Bessel functions of the second kind. Using fractional-calculus mathematics, a novel approach is
introduced to rewrite those Bessel functions (and the statistical model of the S-R-D link SNR) in series
form using simple elementary functions. Moreover, a statistical characterization of the total receive-SNR at
the destination, corresponding to the S-R-D and the S-D link SNR, is provided for a more general relaying
scenario in which the destination receives signals from both the relay and the source and processes them
using maximum ratio combining (MRC). Using the novel statistical model for the total receive SNR at the
destination, accurate and simple analytical expressions for the outage probability, the bit error probability,
and the ergodic capacity are obtained. The analytical results presented in this paper provide a theoretical
framework to analyze the performance of the AF cooperative systems with an MRC receiver.

INDEX TERMS Modified bessel function of second kind, amplify and forward (AF), maximum ratio
combining (MRC).

I. INTRODUCTION
Cooperative communication to enhance the transmission rate
of a communication system was first introduced in [1], and
‘‘distributed spatial diversity’’ turns out to be a promising
method that exploits the antennas of several distributed user
terminals to achieve transmit diversity in space.

Several relaying protocols have been proposed in the
literature, such as Amplify-and-Forward (AF), Decode-and-
Forward (DF), Soft-DF, and Compress-and-Forward (CF)
(see e.g. [2]), where, depending on the parameters of the
network, each of them can be the method of choice. There
is currently a lot of interest in AF relaying because of its low
complexity compared to other relaying protocols; hence, AF
is also the focus of this work.

For an analytical performance investigation of AF relaying
with maximum-ratio-combining (MRC) at the destination, a
statistical model of the total receive signal-to-noise (SNR)
ratio, SNRtot, is required, which is equivalent to the sum of
SNRs corresponding to the Source-Destination (S-D) and the

Source-Relay-Destination (S-R-D) link SNRs (i.e. SNRtot =
SNRsd + SNRsrd). To the best of our knowledge, a theoretical
statistical model of SNRtot is yet unknown (but will be pre-
sented in this paper). Numerous studies, however, consider
the problem of finding a statistical model of SNRsrd. There
are two main trends in the literature: either a single-branch
systemmodel is assumed, in which the receiver operates only
on the relay transmission and, hence, no MRC is employed at
the destination, or upper and/or lower performance bounds
are considered assuming an MRC receiver at the destination.

In [3]–[8] statistical models for SNRsrd have been proposed
for Rayleigh and Nakagami-m channels assuming that the
direct S-D channel is in a deep fade, so the effect of the S-D
link can be ignored, and the problem to find a statistical model
for SNRtot = SNRsrd + SNRsd is not further investigated.
The work reported in [9] deals with the outage performance
of an AF relaying system assuming Nakagami-m fading
and a Selection Combining (SC) receiver at the destination.
However, an SC receiver is, essentially, a single-branch sys-
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tem model, in which the receiver operates either on the S-D
link or on the S-R-D link, depending on the receive SNRs
on the two links. Since the SC receivers are outperformed by
MRC receivers, we are interested in the latter in this paper.
For comparison, simulation results are presented in the forth-
coming sections to show the superiority of MRC receivers
over SC receivers. In [10] an exact closed-form expression
is obtained for the ergodic capacity of a single-branch AF
relaying system over Rayleigh fading channels, when the
direct S-D link is not available, but no results are given for
a scenario with an existing S-D link when the destination
employs an MRC receiver. In [11]–[14] several performance
measures for AF relaying systems are investigated, but in all
of them a single-branch system model is assumed, in which
the destination operates only based on the relay transmission.
In fact, in all the aforementioned contributions, performance
analysis is based on a system model in which the destination
does not employ an MRC receiver.
The need for a simple analytical model of SNRtot is evident

when evaluating the performance of variable-gain AF coop-
erative systems with an MRC receiver at the destination. Due
to the lack of such a statistical model, bounds are usually used
to characterize performance: e.g. in [15] and [16] the ergodic
capacity of AF relaying systems is investigated for the general
case of an available S-D link and a multiple relay scenario,
but only an upper bound of ergodic capacity is obtained.
In [17] and [18] an approximation for the PDF of SNRtot is
used in order to avoid the use of Bessel functions (details to
follow) by taking the worst of the S-R link and the R-D link to
approximate the whole S-R-D link, leading to an upper bound
because, albeit less so, the better link will also cause a loss of
information. This way, theoretical performance bounds of the
bit error rate, the outage probability and the ergodic capacity
of multiple-relay AF cooperative systems over various fading
models are obtained when the destination employs an MRC
receiver. Several methods are provided in [19]–[26] for calcu-
lating the Symbol Error Rate (SER) of AF relaying systems
but in all of them, deriving a statistical model for SNRtot
is avoided. Consequently, those approaches do not allow to
obtain exact results on other performance measures such as
ergodic capacity or outage probability.

A careful study of the literature reveals that, in spite of
several attempts to deal with the original problem of finding
the PDF of SNRtot, mathematical complexity will not allow
for explicit and practically useful analytical results. To the
best of the our knowledge, no exact closed-form solution for
the PDF of SNRtot has been reported so far in the literature.
To cope with the computations involving complicated

mathematical functions, a feasible solution is to use an equiv-
alent series representation of the functions (e.g. [27]–[30]).
In fact, the appearance of the modified Bessel function of the
second kind,Kν(·), in the PDF of SNRsrd is the main source of
intractability in AF-related calculations. We aim to substitute
Kν(·) with an equivalent series representation in this paper.
However, the specific choice of an appropriate equivalent
representation is crucial: although a series representation of

Kν(·) is available from [31, 8.446], this representation ismuch
more complicated than the Bessel function itself. In [32] an
equivalent representation for Kν(·) is also introduced, but this
formulation again is not helpful for the performance analysis
of AF relaying, because a ‘‘0’’ appears in the denominator
of the series expression at functions of interest, therefore the
formulation can’t be used for a numerical evaluation.

Since there are several well known simple series repre-
sentations of Iν(·) (modified Bessel functions of the first
kind, ν-th order), one might propose to exploit the relation
Kν(·) = π

(
I−ν(·)− Iν(·)

)
/2 sin(πν) from [33, 10.27.4], but

note that sin(πν) = 0 for ν = 0, 1, 2, · · ·. As will be demon-
strated in following sections, an equivalent series representa-
tion of Kν(·) is required particularly for ν = 0 and 1; hence,
employing this formulation for Kν(·) is not helpful to obtain
the desired results.

As there is no appropriate and simple series representation
of Kν(·) available in the literature, we derive a novel series
representation of Kν(·) in terms of simple elementary func-
tions (such as xne−x) using fractional calculus mathematics.
With this result, the complex statistical model of SNRsrd turns
out to be simple and easily tractable. Thereafter, the Cumula-
tive Distribution Function (CDF) and the Probability Density
Function (PDF) of SNRtot will be derived at high SNRs. Using
the PDF of SNRtot, closed-form expressions for the outage
probability, the bit-error probability (BEP) and the ergodic
capacity will be derived, which, to the best of our knowledge,
are the first analytical results on variable-gain AF cooperative
systems with an MRC receiver at the destination. Note that
we mainly consider a single relay scheme in the paper but as
will be observed throughout the paper, the proposed method
can be applied to multiple relay schemes as well. Some
simulation results are also provided to show the usefulness of
the proposed approach for more complicated multiple-relay
scenarios.

The remainder of the paper is organized as follows: in
Section II the system model is introduced. In Section III the
fractional-calculus method is exploited to derive an equiv-
alent series representation of Kν(x). Based on the results
derived in Section III, the PDF and CDF of |heq|2 (equiva-
lently the PDF and CDF of SNRtot) are derived in Section IV,
and in Section V novel closed-form expressions are provided
for some performance measures of variable-gain AF cooper-
ative systems, including outage probability, BEP and ergodic
capacity.

II. SYSTEM MODEL
We consider a two-hop variable-gain AF cooperative system
as illustrated by Fig. 1. The source (S) sends data to the
destination (D) by the help of an intermediate relay node (R).
The destination ‘‘hears’’ both the source and the relay trans-
missions and employs a maximum-ratio-combining (MRC)
receiver to jointly exploit all information available at the
destination.

Motivated by practical hardware constraints, the condition
is posed that the relay operates in half-duplex mode, i.e. the
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FIGURE 1. System model.

relay can’t receive and transmit simultaneously at the same
carrier frequency. Moreover, the overall system is assumed to
be orthogonal in time, i.e. a repetitive ‘‘time-slotted’’ setting
is used, in which one slot is reserved for the transmission by
the source and the other slot is used for cooperative transmis-
sion by the relay; this is a very common system setting in the
literature.

The signals corresponding to the source transmission
received at the destination (ysd) and the relay (ysr) are

ysd =
√
Pshsds+ nd (1)

ysr =
√
Pshsrs+ nr (2)

and the signal received at the destination corresponding to the
relay transmission is

yrd =

√
PrPs

Ps|hsr|2 + N0
hsrhrds︸ ︷︷ ︸

‘‘useful’’ signal

+

√
Pr

Ps|hsr|2 + N0
hrdnr + nd︸ ︷︷ ︸

noise

(3)

where s is transmit symbol vector with unit average power.
The parameter Ps and Pr are the source and the relay power
constraints, respectively. hsd, hsr and hrd represent the channel
coefficients corresponding to the S-D, the S-R and R-D links,
respectively.

The channel coefficients, which capture the effects of
path-loss and block fading, are assumed to be zero-mean,
white complex Gaussian processes with variances σ 2

ij with
i ∈ {s, r} and j ∈ {r, d}. The additive receiver noise is mod-
elled by nd and nr, which are sample-vectors from zero-
mean, white complex Gaussian processes. For simplicity of
notation, the same noise power N0 is assumed at the receivers
of the relay and the destination. The SNR at the output of
the MRC receiver is SNRtot = γ (|hsd|2 + |hsrd|2) = γ |heq|2

with γ = Ps/N0. The channel power |hsd|2 is exponen-
tially distributed (i.e. f|hsd|2 (x) = λsde

−λsdx) with parameter
λsd = 1/σ 2

sd. The PDF of |hsrd|2 reads

f|hsrd|2 (x) = 2e−λSx
[
ηλPK0(2

√
λPx(x + 1/γ ))

+ λS
√
λPx(x + 1/γ )K1(2

√
λPx(x + 1/γ ))

]
(4)

with Kν(·) the modified Bessel function of the second
kind and ν-th order, η = 2x + 1/γ , λP

.
= λsrλrd and

λS
.
= λsr + λrd. The CDF of |hsd|2 is

F|hsrd|2 (x) = 1− 2e−λSx
√
λPx(x + 1/γ )

×K1

(
2
√
λPx(x + 1/γ )

)
. (5)

A proof of (4) and (5) can be found in [34]; however, in order
to keep the consistency of the notation, an alternative proof
of (4) and (5) is provided in Appendix A.

The results in (4) and (5) do not easily lend them-
selves to further mathematical calculations (e.g. integration)
as modified Bessel functions Kν(·) appear. Hence, no sta-
tistical model for SNRtot is available in the literature so
far.

In what follows, an equivalent representation of Kν(·) is
derived that is based on a series-representation involving
simple mathematical functions of the form xne−x . This novel
equivalent representation of Kν(·) paves the way for further
theoretical analysis of AF relaying systems.

III. NOVEL SERIES REPRESENTATION OF MODIFIED
BESSEL FUNCTIONS OF SECOND KIND
The mathematical concept of integration and differen-
tiation of arbitrary (non-integer) order is called ‘‘frac-
tional calculus’’; foundations of the theory are discussed
e.g. in [35], [36]. It will be used below to derive a simple
novel equivalent representation of Kν(βx).
Theorem 1: Equivalent Representation of Kν(βx)

A modified Bessel function, Kν(βx), of the second kind and
ν-th order, with ν > 0, can be represented by the infinite
series

Kν(βx) = e−βx
∞∑
n=0

n∑
i=0

3(ν, n, i) · (βx)i−ν, (6)

with the coefficients1

3(ν, n, i) .=
(−1)i

√
π0(2ν)0( 12 + n− ν)L(n, i)

2ν−i0( 12 − ν)0(
1
2 + n+ ν)n!

(7)

that involve the Lah numbers (e.g. [38])

L(n, i) .=
(
n− 1
i− 1

)
n!
i!

for n, i > 0, (8)

and the conventions L(0, 0) .= 1; L(n, 0) .= 0 and L(n, 1) .=
n! for n > 0.

Proof: Let s be a real non-negative number, i.e. s > 0
and s ∈ R. Let f (x) be continuous on x ∈ [0,∞) and
integrable on any finite subinterval of x > 0. Then the

1For the computation of the coefficients, some results for the Gamma-
function are useful: 0( 12 ) =

√
π , 0(− 1

2 ) = −2
√
π , 0(1) = 1, 0(x+1) =

x0(x) and 0(n+1) = n! for natural numbers n > 0. For n = 0,−1,−2, ...
0(n) is not defined (see e.g. [37]).
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Riemann-Liouville operator (e.g. [36]) of fractional integra-
tion is defined as

I s {f (x)} .=
1
0(s)

∫ x

0
(x − t)s−1f (t)dt. (9)

On the other hand, from [31, 3.471.4] we have∫ x

0
(x − t)s−1t−2se−β/tdt =

0(s)β
1
2−s

√
πx

e
−β
2x Ks− 1

2
(
β

2x
).

(10)

Assuming f (t) = t−2se−β/t , the two integrals in (9) and (10)
are identical: this motivates the novel approach to derive
an equivalent expression for Kν(βx) by use of fractional
integration.

It follows from (9) and (10) that

I s
{
x−2se−β/x

}
=
β

1
2−s
√
πx

e
−β
2x Ks− 1

2
(
β

2x
). (11)

The Leibniz rule for the Riemann-Liouville operator (see
Appendix B for a proof) is given by

I s {h(x)g(x)} =
∞∑
n=0

(−1)n0(n+ s)
n!0(s)

I (s+n) {h(x)}Dn {g(x)}

(12)

where n is a non-negative integer, s + n is a non-negative
fractional number and Dn .= dn

dxn . By solving I
(s+n) {h(x)} for

h(x) = x−2s and Dn {g(x)} for g(x) = e−β/x , the equivalent
Bessel model (6) will be derived.

Let h(x) = xp, then according to (9)

Iα{xp} =
1

0(α)

∫ x

0
(x − t)α−1tpdt, (α > 0) (13)

=
1

0(α)

∫ x

0
(1−

t
x
)α−1xα−1tpdt (14)

=
xα+p

0(α)

∫ 1

0
up(1− u)α−1du, (15)

=
0(1+ p)

0(1+ p+ α)
xp+α. (16)

With the substitution u = t
x , (15) follows from (14);

(16) follows from the definite integral
∫ 1
0 x

a(1 − x)bdx =
0(a+1)0(b+1)
0(a+b+2) in [37, p. 70], with0(·) the Gamma-function and

the real-valued constants a, b /∈ {−1,−2,−3, ...}. Suppose
that p = −2s and α = s+ n, then

I (s+n)
{
x−2s

}
=

0(1− 2s)
0(1− s+ n)

xn−s. (17)

With g(x) = e−β/x in (12), from [39] we have

Dn
{
e−β/x

}
= e−β/x

(−1)n

xn

n∑
i=0

(−1)iL(n, i)(β/x)i, (18)

with L(n, i) defined in (8).

By substituting (17) and (18) into (11) and (12) it is
straightforward to obtain

∞∑
n=0

(−1)n0(n+ s)
n!0(s)

0(1− 2s)
0(1+ n− s)

xn−s

× e−β/x
(−1)n

xn

n∑
i=0

(−1)iL(n, i)(β/x)i

=
β

1
2−s
√
πx

e−
β
2x Ks− 1

2
(
β

2x
) (19)

and so

Ks− 1
2
(
β

2x
)= e−β/(2x)

√
π

∞∑
n=0

n∑
i=0

×
0(n+ s)0(1−2s) · (−1)iL(n, i)

n!0(s)0(1+ n− s)

(β
x

)s+i−1/2
.

(20)

Changing the variable x → 1
2x , assuming 1 − 2s = 2ν,

exploiting K−ν = Kν the result is the infinite series

Kν(βx) = e−βx
∞∑
n=0

n∑
i=0

3(ν, n, i) · (βx)i−ν, (21)

where 3(ν, n, i) is given by (7).
It should be made clear that the above representation

of Kν(βx) is not valid for ν =
{
0, 12 ,

3
2 , · · ·

}
. That is

because 0(2ν) and 0( 12 + n − ν) in (7) diverge to ±∞.
However, for the case of ν = 0, one can compute K0(βx)
using the equivalent representation of K1(βx) and K2(βx) by
Kν(βx) = Kν−2(βx)+

2(ν−1)
βx Kν−1(βx) that is obtained from

[33, 10.38.4].

A. FINITE SERIES REPRESENTATION OF Kν(βx)
The equivalent representation of Kν(βx) may significantly
simplify computations involving Kν(βx), as the series in (6)
contains the variable x only in the simple function-template
x i−νe−βx that can, e.g., be easily integrated. The series repre-
sentation contains, however, an infinite number of terms that
can’t be computed in practical applications.

Fortunately, the series representation of Kν(βx) is rather
accurate for a finite number of terms as defined as follows:

Kν(βx) = e−βx
k∑

n=0

n∑
i=0

3(ν, n, i) · (βx)i−ν + ε (22)

with

ε = e−βx
∞∑

n=k+1

n∑
i=0

3(ν, n, i) · (βx)i−ν . (23)

The first term on the right-hand side of (22) represents the
actual function to approximate Kν(βx), and ε represents the
truncation error. Fig. 2 illustrates numerical values of the
finite series representation of K1(βx) (with k = 2 in (22))
for various values of β (dashed lines) and also the theoretical
fully accurate values of K1(βx) (solid lines). It is clear from
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FIGURE 2. K1(βx) and its finite series representation with k = 4 in (22).

FIGURE 3. Truncation error of K1(x) for various values of k .

the figure that the finite series for Kν(βx) with only k = 4
merges with theoretical Kν(βx) with high accuracy.

1) TRUNCATION ERROR
In the Appendix B, it is proved that the Leibniz rule, (12),
for the Riemann-Liouville operator is a direct result of a
Taylor-series expansion of some function, say h(t), at t = x.
Consequently, the equivalent infinite series representation of
Kν(βx) in (21) is also a result of some Taylor expanssion at
point x. Therefore, it is expected that the equivalent infinite
series representation of Kν(βx) can be truncated with high
accuracy with only few terms. Fig. 3 shows the absolute value
of the truncation error, i.e. |ε|, for k = 5, 10 and 20. It is
obvious from Fig. 3 that the error is as low as about 10−4

for k = 10 and as low as about 10−5 for k = 20. The
truncation error is about 10−3 when x → 0, but considering
that Kν(x) → ∞ as x → 0, the truncation error of 10−3 is
negligible. In the remainder of the paper we assume k = 4,

although even much lower values of, e.g. k = 2, turn out to
produce accurate results.

2) CONVENIENT REPRESENTATION FOR PRACTICAL
USE OF THE TRUNCATED SERIES
For convenience we re-write (22) such that one of the sum-
operators is included in the series coefficients. For this, the
inner sum over i in (22) is evaluated row-wise, with the sum-
index n counting the rows. This structure is then summed up
column-wise and the result can be written as

Kν(βx) =
e−βx

(βx)ν

k∑
q=0

( k∑
l=q

3(ν, l, q)
)

︸ ︷︷ ︸
.
= aν,k,q

·(βx)q + ε. (24)

As long as k is limited, the above series representation (24)
can always be used to replace (22) without any convergence
problems while the truncation error ε can be made arbitrarily
small. Numerical values for the coefficients aν,k,q are given in
Table 1 for the first-order (ν = 1) modified Bessel function of
the second kind K1(·). It should be noted that the coefficient
with q-index 1 is always found to equal a1,k,1

.
=

2k
2k+1 .

Using Table 1, a rather accurate approximation (see results in
Fig. 3) ofK1(·) can be obtained by (24) with very few floating
point operations, and this is also and particularly true for
the order ν = 1 where other series representations produce
indeterminate results.

IV. DISTRIBUTION OF EQUIVALENT CHANNEL POWER
A. SINGLE RELAY
Assuming an MRC receiver at the destination, the total
receive SNR is the sum

SNRtot = SNRsd + SNRsrd = γ (|hsd|2 + |hsrd|2)︸ ︷︷ ︸
|heq|2

(25)

of SNRs corresponding to the S-D and the S-R-D links (this is
also true when, as in the given case, the corresponding signals
are received in different time slots, because they are jointly
processed by the MRC receiver). For a performance analysis
of the system, the PDF and the CDF of the equivalent channel
power-gain

|heq|2
.
= |hsrd|2 + |hsd|2 (26)

are derived below.
For the CDF we obtain

F|heq|2 (x) = P
(
|hsd|2 + |hsrd|2 ≤ x

)
=

∫ x

0

∫ x−u

0
f|hsd|2 (t) · f|hsrd|2 (u)dtdu

=

∫ x

0
(1− e−λsd(x−u)) · f|hsrd|2 (u)du

= F|hsrd|2 (x)− e−λsdx
∫ x

0
eλsdu · f|hsrd|2 (u)du

= λsde−λsdx
∫ x

0
eλsdu · F|hsrd|2 (u)du, (27)
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TABLE 1. Coefficients aν,k,q in (24) for ν = 1 with four digits of accuracy.

where the last equality follows from integration by parts with∫ x
0 p(u)q

′(u)du = p(u)q(u)|x0 −
∫ x
0 p
′(u)q(u)du and p(u) .

=

eλsdu and q′(u) .= f|hsrd|2 (u).
The CDF F|hsrd|2 (·) and the PDF f|hsrd|2 (·) were derived

in (5) and (4), respectively. For simplicity we will restrict
calculations below to the high ‘‘transmit-SNR’’ regime but
it will be demonstrated by Figs. 6,7,8 that this is justified
because it leads to very accurrate numerical results, even in
the low-SNR region.

By using (5) in (27), and assuming ‘‘high SNR’’, (27)
simplifies to

F|heq|2 (r) = 1− e−λsdr − 2λsd
√
λsrλrde−λsdr

×

∫ r

0
xe−(λsr+λrd−λsd)xK1(2

√
λsrλrdx)dx. (28)

The integral in (28) is non-trivial and does not seem to
have closed-form solution. However, using the results from
Section III, the integral can be rewritten as follows

η
.
=

∫ x

0
2
√
λsrλrdue−(λsr+λrd−λsd)uK1(2

√
λsrλrdu)dx

≈

k∑
q=0

a1,k,q

∫ x

0
(2
√
λsrλrdu)qe−(λsr+λrd+2

√
λsrλrd−λsd)udu

≈

k∑
q=0

(2
√
λsrλrd)qq!a1,k,q

(λsrd − λsd)q+1

×
(
1−

q∑
c=0

(λsrd − λsd)c

c!
xce−(λsrd−λsd)x

)
(29)

where the second step is obtained by using the series repre-
sentation of K1(2

√
λsrλrdx) derived in (24). As the series is

truncated (for k limited), this is an approximation, indicated
by the use of ‘‘≈’’ instead of strict equality; the truncation
error can, however, be made arbitrarily small by choosing
proper k . Assuming λsrd = (

√
λsr +

√
λrd)2, the last equality

follows from identity [31, 3.351.1] where∫ x

0
uqe−λudu =

q!
λq+1

(1−
q∑

c=0

λc

c!
xce−λx). (30)

By substituting (29) into (28) it is straightforward to obtain
F|heq|2 (x) as

F|heq|2 (x) ≈ 1−Ae−λsdx +
k∑

q=0

q∑
c=0

Bxce−λsrdx (31)

where coefficients A and B are independent of x, defined as

A .
= 1+

k∑
q=0

λsd(2
√
λsrλrd)qq!a1,k,q

(λsrd − λsd)q+1
(32)

B .
=
λsd(2
√
λsrλrd)qq!a1,k,q

c!(λsrd − λsd)q−c+1
. (33)

The PDF of |heq|2 is the derivative of F|heq|2 (x) in (31) w.r.t x,
which is easy to calculate as the series representation involves
simple elementary functions only:

f|heq|2 (x) ≈ Aλsde−λsdx+
k∑

q=0

q∑
c=0

B(cxc−1 − λsrdxc)e−λsrdx .

(34)

Fig. 4 illustrates the accuracy of f|heq|2 (x) using the expression
derived in (34) (solid line) by a comparison with histogram-
results obtained from Monte Carlo simulations.

In the literature (e.g. [17]–[20]), when considering relaying
systems with MRC receiver at the destination, a method is
proposed for estimating the statistics of SNRsrd based on the
bound SNRsrd

.
= min(SNRsr, SNRrd). Consequently, SNRsrd

has as an exponential distribution with parameter λsr + λrd.
Note that, although this method greatly simplifies the calcu-
lations by avoiding modified Bessel functions in the formu-
lations, accuracy is compromised: Fig. 4 (dashed line) shows
the result for f|heq|2 (x) when using the bound. It is clear that
the approach presented in this paper, even with low trunca-
tion order k , leads to accurate results, while the accuracy of
the bounding technique is much lower. Note that with the
coefficients given in Table 1 for lower truncation orders k ,
the statistical model proposed in this paper is, indeed, no
more complex than an exponential distribution (which on
computing hardware would also be implemented by a series
representation as any other transcendental function).
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FIGURE 4. PDF f
|heq|2 (x) using the theoretical model derived in (34);

Monte Carlo simulations and the bounding technique proposed in the
literature (e.g. [17]–[20]), all with λsr = λrd = 1.

B. MULTIPLE RELAYS
So far, we have assumed a single-relay scenario where
SNRtot = SNRsd + SNRsrd; the CDF and the PDF
of SNRtot corresponding to such a scenario have been
derived in (31) and (34), respectively. However, the exten-
sion of such a system model to a scenario with multi-
ple relays is straightforward. For a system with M relays,
SNRtot = SNRsd +

∑M
m=1 SNRsrdm . From [40], the PDF of

SNRtot can be written as

ftot = fγsd ∗ fγsrd1 ∗ · · · fγsrdM (35)

where the symbol ∗ represents the convolution operation,
and fγsrdm represents the PDF of the SNR received at the
destination corresponding to relay m. Consequently, with the
PDF of SNRsrd according to the series model explained above,
the calculation of the convolution operations in (35) will
reduces to the simple integration as in (30). Fig. 5 compares
the PDF of SNRtot with various numbers of relays using
the theoretical approach explained above with the results of
Monte-Carlo simulations. It is clear from the figure that the
theoretical results excellently match the simulations, even
with a truncation of the series at k = 4.

V. PERFORMANCE ANALYSIS
A closed-form expression for the CDF and the PDF of
|heq|2 (or equivalently the CDF and the PDF of SNRtot)
facilitates the calculation of exact2 theoretical expressions
for several performance measures of AF cooperative systems.
In the sequel, outage probability, average bit-error probabil-
ity (BEP) and ergodic capacity of the system are investigated.
Note that the results in the last section were derived with the

2‘‘Exact’’ in the sense that for arbitrarily large but limited values for
k in (24) the power series representation will have an arbitrarily small
truncation error.

FIGURE 5. PDF f
|heq|2 (x) for multiple relays; λsr = λrd = 1; series

truncation at k = 4 for the theoretical results.

assumption of large γ , which means we consider the high
transmit-SNR regime. As will become evident at the end of
the section, the results are not only precise at high SNR but
are rather accurate at low SNR too. Moreover, as there are
extensive related studies in the literature (e.g. [9]) investi-
gating selection combining (SC) receivers, some simulations
are provided in this section that illustrate the superiority of
MRC receivers to SC receivers and, hence, confirming the
motivation for studying MRC receivers in this work.

A. OUTAGE PROBABILITY
The capacity of the Rayleigh faded system illustrated in Fig. 1
(assuming Gaussian transmit codebooks) is

I =
1
2
log2(1+ γ |heq|

2) bps/Hz, (36)

where the statistics of |heq|2 were derived in (31) and (34).
The factor 1

2 reflects that the same information is conveyed
to the destination in two time slots. The outage probability is
defined as

pout(R, SNR) = P(I < R)

= P
(
|heq|2 ≤

22R − 1
γ

)
(37)

Setting x .
= (22R − 1)/γ , the outage probability, (37), is

equivalent to F|heq|2 (x) that is derived in closed form in (31).
Fig. 6 shows the outage probability plotted usingMonte Carlo
simulations and also exploiting the theoretical expression
derived in (31) with the outer summation truncated at k = 4.
The curves show that the truncated series representation, even
with a small number k , provides accurate results across the
whole range of SNRs (not only in the high-SNR region).
It should be noted that the results of related studies in the
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FIGURE 6. Outage probability for various λij , i ∈ {s,r} with j ∈ {r,d} and
α = 1.

literature (e.g. see [18, Fig. 3]) are usually based on bounding
techniques that lead to much less accurate results than the
approximation of the true results by a truncated power series
we present in this paper. The dashed lines in Fig. 6 correspond
to the outage probability of an equivalent system with an SC
receiver at the destination. The comparison explicitly shows
that MRC receivers outperform SC receivers.

B. AVERAGE BIT ERROR PROBABILITY
In this sequel, the average BEP of the AF relaying system in
Fig. 1 is analytically investigated. The simplicity of channel
model and the results in (31) and (34) allows for calculating
the average BEP for arbitrary modulation schemes. For sim-
plicity, however, we only evaluate the performance for BPSK
modulation.

The instantaneous BEP of BPSK-modulated transmission
over an AWGN channel, given channel coefficient h, is given
by (e.g. [41])

pb(e|h) =
1
2
erfc(

√
γ |h|2), (38)

where γ = P/N0 is transmit SNR. Therefore, assuming AF
relaying with h = heq, the average BEP is

pb(E) =
1
2
Eheq (erfc(

√
γ |heq|2))

=
1
2

∫
∞

0
erfc(
√
γ x)f|heq|2 (x)dx. (39)

From [42, 7.1.19], d
dx erfc(

√
γ x) = −

√
γ
π
x−1/2e−γ x . Then,

using integration by parts, pb(E) in (39) can be written as

pb(E) =
1
2

√
γ

π

∫
∞

0
x−1/2e−γ xF|heq|2 (x)dx. (40)

FIGURE 7. Bit Error Probability for various λij , i ∈ {s,r} with j ∈ {r,d} and
α = 1.

By substituting F|heq|2 (x) from (31) into (40), then exploiting
(30) and some basicmanipulations, one can obtain the closed-
form solution for the average BEP as

pb(E)

=
1
2

(
1−A

√
γ

γ + λsd
+

k∑
q=0

q∑
c=0

B
√
γ

π

0(c+ 1
2 )

(γ + λsrd)c+
1
2

)
.

(41)

Fig. 7 illustrates the BEP obtained from (41) with the outer
summation truncated at k = 4. According to Fig. 7, regardless
of the specific values of the fading parameters λij, the theo-
retical BEP perfectly matches the Monte Carlo simulations
at high SNR, whereas at low SNR the theoretical results
only slightly deviate from the numerical results. Again it is
clear from the comparison in Fig. 7 that the MRC receiver
significantly outperforms the SC receiver (with the bounding
technique applied to its analysis).

C. ERGODIC CAPACITY
As another example to show the usefulness of the proposed
PDF and CDF for |heq|2, the ergodic capacity of the relay-
ing scheme depicted in Fig. 1 will be derived. The ergodic
capacity is defined as

Cav =
1
2
Eheq (ln(1+ γ |heq|

2)) (42)

where Eheq (·) is defined as the expectation operator over heq,
i.e.

Cav =
1
2

∫
∞

0
ln(1+ γ x)f|heq|2 (x)dxnats/s/Hz, (43)

where ln(·) represents the natural logarithm. By substituting
(34) into (43), we obtain a novel closed form expression for
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FIGURE 8. Ergodic Capacity (nats/sec/Hz) of the system with multiple
relays and equal transmit power from the relays.

the exact ergodic capacity as

Cav =
Aλsd
2γ

G3,1
2,3

(
λsd

γ

∣∣∣∣ −1, 0−1,−1, 0

)
+

k∑
q=0

q∑
c=0

Bc
2γ c

G3,1
2,3

(
λsrd

γ

∣∣∣∣−c,−(c− 1)
−c,−c, 0

)

−
Bλsrd
2γ c+1

G3,1
2,3

(
λsrd

γ

∣∣∣∣ −(c+ 1),−c
−(c+ 1),−(c+ 1), 0

)
(44)

whereGm,np,q (·) is Meijer G-function [33, Chapter 16]. To solve
(43), one can employ [31, 4.222.8] for integer c and some
algebraic manipulations to arrive at (44); the details are omit-
ted due to lack of space. Note that we exploit f|heq|2 (x) in (34)
to derive the Cav of a single relay cooperative system in (44).
However, a simple approach based on the convolution of
PDFs was explained in Section IV-B, in order to derive the
PDF of SNRtot for a multiple relay system. Using that, it
is straightforward to derive the Cav of a multiple relay AF
system. Fig. 8 illustrates the ergodic capacity of the system,
theoretically and also using Monte Carlo simulations, assum-
ing various numbers of relays. It is clear from Fig. 8 that,
regardless of the number of the relays, the results are not only
precise at high SNR but also are accurate at low SNR.

Again it should be noted that the results of related studies
based on bounding techniques (see e.g. [16, Fig. 3] or [18,
Fig. 4]) lead to much less accurate results.

VI. CONCLUSIONS
An analytical probabilistic description by the PDF and
the CDF of the power-gain, |hsrd|2, of the equivalent
source-relay-destination channel is derived for variable-gain
Amplify-and-Forward relaying systems that are subject to
block Rayleigh fading on the transmit channels. The PDF
and CDF involve modified Bessel functions of the second

kind,Kν(·). Based on fractional calculusmathematics, a novel
power series representation of Kν(·) is introduced that has
simple elementary functions of the form xne−x as its basic
components. This allows to further obtain the PDF and
the CDF of the power gain, |heq|2, of the overall channel
observed by the destination, which consists of a source-relay-
destination link and a direct source-destination link. For the
analysis, a maximum-ratio-combining receiver is assumed at
the destination.
The usefulness of the PDFs and CDFs expressed by the

novel power series representation is demonstrated by theoret-
ical analysis of the outage probability, the bit error probability
and the ergodic capacity of a variable-gain AF cooperative
system with an MRC receiver at the destination. In order
to ease computation, the power series representations of the
analytical formulas were truncated with a small number of
power series coefficients, and the numerical results were
demonstrated to perfectly match Monte Carlo simulations.
The analytical formulas presented in this paper (for the

PDF and CDF as well those for the performance metrics)
provide a theoretical framework to analyse the performance
of the AF cooperative systems with an MRC receiver appear
to be the first theoretical expressions derived so far that
are accurate across the whole range of channel SNRs, in
particular, the ones derived for outage probability and ergodic
capacity.

APPENDIX A
STATISTICS OF THE S-R-D LINK SNR
Using (3), the SNRsrd is

SNRsrd
.
=

PrPs
Ps|hsr|2+N0

|hsr|2|hrd|2

Pr
Ps|hsr|2+N0

|hrd|2N0 + N0
. (45)

where the notations are the same as defined in Section II.
In what follows, without loss of generality, we set

Ps
.
= P and Pr

.
= αP with α > 0,P > 0 (46)

to simplify notation. We obtain

SNRsrd =
(P/N0)|hsr|2α|hrd|2

α|hrd|2 + |hsr|2 + (N0/P)
. (47)

As the magnitudes of the channel coefficients are Rayleigh-
distributed, the squared magnitudes |hsr|2 and |hrd|2 are expo-
nentially distributed according to

f|hsr|2 (x) = λsre
−λsrx and f|hrd|2 (x) = λrde

−λrdx with x > 0

(48)

and the parameters λsr
.
= 1/σ 2

sr and λrd
.
= 1/σ 2

rd
(see [40, p. 190]. Note that α|hrd|2 is also exponentially dis-
tributed with parameter λrd/α. Therefore, to further simplify
notation, we substituteα|hrd|2 by |hrd|2 (i.e. |hrd|2→ α|hrd|2)
but we assume that the new |hrd|2 is exponentially distributed,
now with parameter λrd

.
= 1/ασ 2

rd. Moreover, we set γ .
=
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P/N0, so (47) can be written as SNRsrd = γ |hsrd|2 with

|hsrd|2
.
=

|hsr|2|hrd|2

|hsr|2 + |hrd|2 + 1/γ
(49)

the power gain of the equivalent S-R-D channel. In the fol-
lowing Lemma, the CDF and the PDF of |hsrd|2 is derived.
Lemma 1: The CDF and the PDF of |hsrd|2

LetX1 andX2 be two independent exponentially distributed
RVs with the PDFs fXi (xi) = λie

−λixi , xi ≥ 0, i ∈ {1, 2}, and
the parameters λ1, λ2 > 0, and let δ > 0 be a real constant.
Then, the CDF of the RV X = X1X2

X1+X2+δ
is

FX (x) = 1− 2e−(λ1+λ2)x
√
λ1λ2x(x + δ)

×K1

(
2
√
λ1λ2x(x + δ)

)
(50)

Proof: From the definition of the CDF we obtain

FX (x) = P(
X1X2

X1 + X2 + δ
< x). (51)

As long as X1 < x we have X < x for any value of X2, but for
X1 > x, we have X < 0 only for the range 0 < X2 <

(X1+δ)x
X1−x .

Hence, the probability in (51) is computed by two integrations
as follows:

FX (x) =
∫ x

x1=0

∫
∞

x2=0
fX1 (x1)fX2 (x2)dx2dx1

+

∫
∞

x1=x

∫ (x1+δ)x
(x1−x)

x2=0
fX1 (x1)fX2 (x2)dx2dx1

=

∫ x

x1=0
λ1e−λ1x1dx1

+

∫
∞

x1=x
λ1e−λ1x1

∫ (x1+δ)x
(x1−x)

x2=0
λ2e−λ2x2dx2dx1

= 1− e−λ1x

+

∫
∞

x1=x
λ1e−λ1x1

(
1− e−λ2

(x1+δ)x
(x1−x)

)
dx1

= 1− λ1

∫
∞

x1=x
e−λ2

(x1+δ)x
x1−x · e−λ1x1dx1

= 1− λ1

∫
∞

u=0
e−λ2

(u+x+δ)x
u · e−λ1(u+x)du

= 1− λ1e−(λ1+λ2)x
∫
∞

u=0
e−λ2

(x+δ)x
u · e−λ1udu

= 1− 2e−(λ1+λ2)x
√
λ1λ2x(x + δ)

×K1

(
2
√
λ1λ2x(x + δ)

)
(52)

where the last equality is obtained from [31, 3.471.9] with∫
∞

0
uν−1e−αu · e−

β
u du = 2

(
β

α

) ν
2

Kν
(
2
√
αβ
)
, (53)

where ν = 1 and β .
= λ2(x + δ)x, α

.
= λ1 are positive real

values andKν(·) is the modified Bessel function of the second
kind and ν-th order.

The PDF is best computed as the derivative fX (x) =
dFX (x)/dx of (52); the result is given in (4).

APPENDIX B
PROOF OF THE LEIBNIZ RULE FOR THE
RIEMMAN-LIOUVILLE INTEGRATION OPERATOR
Let s > 0. The Riemman-Liouville intagration operator is
defined as I s {h(x)g(x)} = 1

0(s)

∫ x
0 (x − t)s−1h(t)g(t)dt . It

is straightforward to derive the Leibniz rule by performing
a Taylor series expansion of h(t) at t = x, i.e. h(t) =
∞∑
n=0

(−1)n
n! (x − t)nDn {h(x)}. We obtain

I s {h(x)g(x)}

=
1
0(s)

∫ x

0
(x − t)s−1h(t)g(t)dt

=
1
0(s)

∫ x

0
(x − t)s−1

×

∞∑
n=0

(−1)n

n!
(x − t)nDn {h(x)} g(t)dt

=
1
0(s)

∞∑
n=0

(−1)n

n!
Dn {h(x)}

∫ x

0
(x − t)n+s−1g(t)dt

=

∞∑
n=0

(−1)n0(n+ s)
n!0(s)

In+s {g(x)}Dn {h(x)} (54)

where Dn {h(x)} = dn
dxn h(x).
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