48 research outputs found

    Exotic Low Density Fermion States in the Two Measures Field Theory: Neutrino Dark Energy

    Full text link
    We study a new field theory effect in the cosmological context in the Two Measures Field Theory (TMT). TMT is an alternative gravity and matter field theory where the gravitational interaction of fermionic matter is reduced to that of General Relativity when the energy density of the fermion matter is much larger than the dark energy density. In this case also the 5-th force problem is solved automatically. In the opposite limit, where the magnitudes of fermionic energy density and scalar field dark energy density become comparable, nonrelativistic fermions can participate in the cosmological expansion in a very unusual manner. Some of the features of such states in a toy model of the late time universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos: neutrino mass increases as m ~ a^{3/2}; the neutrino gas equation-of-state approaches w=-1, i.e. neutrinos behave as a sort of dark energy; the total (scalar field + neutrino) equation-of-state also approaches w=-1; the total energy density of such universe is less than it would be in the universe filled with the scalar field alone. An analytic solution is presented. A domain structure of the dark energy seems to be possible. We speculate that decays of the CLEP state neutrinos may be both an origin of cosmic rays and responsible for a late super-acceleration of the universe. In this sense the CLEP states exhibit simultaneously new physics at very low densities and for very high particle masses.Comment: 47 pages, accepted for publication in Int.J.Mod.Phys.

    Particle and Antiparticle sectors in DSR1 and kappa-Minkowski space-time

    Full text link
    In this paper we explore the problem of antiparticles in DSR1 and κ\kappa-Minkowski space-time following three different approaches inspired by the Lorentz invariant case: a) the dispersion relation, b) the Dirac equation in space-time and c) the Dirac equation in momentum space. We find that it is possible to define a map SdsrS_{dsr} which gives the antiparticle sector from the negative frequency solutions of the wave equation. In κ\kappa-Poincar\'e, the corresponding map SkpS_{kp} is the antipodal mapping, which is different from SdsrS_{dsr}. The difference is related to the composition law, which is crucial to define the multiparticle sector of the theory. This discussion permits to show that the energy of the antiparticle in DSR is the positive root of the dispersion relation, which is consistent with phenomenological approaches.Comment: 15 pages, no figures, some references added, typos correcte

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Investigating pseudoscalar and scalar dark matter

    Get PDF
    In this paper another class of Dark Matter candidate particles: the pseudoscalar and scalar light bosonic candidates, is discussed. Particular care is devoted to the study of the processes for their detection (which only involves electrons and photons/X-rays) in a suitable underground experimental set-up. For this purpose the needed calculations are developed and various related aspects and phenomenologies are discussed. In particular, it is shown that - in addition to the WIMP cases already discussed elsewhere - there is also possibility for a bosonic candidate to account for the 6.3 sigma C.L. model independent evidence for the presence of a particle DM component in the galactic halo observed by DAMA/NaI. Allowed regions in these scenarios are presented also paying particular care on the cosmological interest of the bosonic candidate.Comment: 23 pages, 6 figures, 1 table, Int. J. Mod. Phys. A (in press

    Special relativity with two invariant scales: Motivation, Fermions, Bosons, Locality, and Critique

    Full text link
    We present a Master equation for description of fermions and bosons for special relativities with two invariant scales, SR2, (c and lambda_P). We introduce canonically-conjugate variables (chi^0, chi) to (epsilon, pi) of Judes-Visser. Together, they bring in a formal element of linearity and locality in an otherwise non-linear and non-local theory. Special relativities with two invariant scales provide all corrections, say, to the standard model of the high energy physics, in terms of one fundamental constant, lambda_P. It is emphasized that spacetime of special relativities with two invariant scales carries an intrinsic quantum-gravitational character. In an addenda, we also comment on the physical importance of a phase factor that the whole literature on the subject has missed and present a brief critique of SR2. In addition, we remark that the most natural and physically viable SR2 shall require momentum-space and spacetime to be non-commutative with the non-commutativity determined by the spin content and C, P, and T properties of the examined representation space. Therefore, in a physically successful SR2, the notion of spacetime is expected to be deeply intertwined with specific properties of the test particle.Comment: Int. J. Mod. Phys. D (in press). Extended version of a set of two informal lectures given in "La Sapienza" (Rome, May 2001

    Spin half fermions with mass dimension one: theory, phenomenology, and dark matter

    Full text link
    We provide the first details on the unexpected theoretical discovery of a spin-one-half matter field with mass dimension one. It is based upon a complete set of dual-helicity eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity, it belongs to a non-standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. We briefly discuss its relevance to the cosmological `horizon problem'. Because the introduced fermionic field is endowed with mass dimension one, it can carry a quartic self-interaction. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate the new fermion as a prime dark matter candidate. Taking this suggestion seriously we study a supernova-like explosion of a galactic-mass dark matter cloud to set limits on the mass of the new particle and present a calculation on relic abundance to constrain the relevant cross-section. The analysis favours light mass (roughly 20 MeV) and relevant cross-section of about 2 pb. Similarities and differences with the WIMP and mirror matter proposals for dark matter are enumerated. In a critique of the theory we bare a hint on non-commutative aspects of spacetime, and energy-momentum space.Comment: 78 pages [Changes: referee-suggested improvements, additional important references, and better readability

    Surface topography of the InSb-MnSb thin films

    Get PDF
    In that report we observe a semiconductor eutectic composite InSb-MnSb thin films, prepared by the "flash evaporation" method. The atomic force microscopy and the scanning electron microscopy were employed for investigation microstructure and surface relief of the InSb-MnSb thin films. В этом отчете мы наблюдаем за тонкими пленками полупроводникового электического композита InSb-MnSb, полученными методом «мгновенного испарения». С помощью атомно-силовой микроскопии и сканирующей электронной микроскопии исследованы микроструктура и рельеф поверхности тонких пленок InSb-MnSb

    Surface topography of the InSb-MnSb thin films

    Get PDF
    In that report we observe a semiconductor eutectic composite InSb-MnSb thin films, prepared by the "flash evaporation" method. The atomic force microscopy and the scanning electron microscopy were employed for investigation microstructure and surface relief of the InSb-MnSb thin films. В этом отчете мы наблюдаем за тонкими пленками полупроводникового электического композита InSb-MnSb, полученными методом «мгновенного испарения». С помощью атомно-силовой микроскопии и сканирующей электронной микроскопии исследованы микроструктура и рельеф поверхности тонких пленок InSb-MnSb

    Doubly Special Relativity and de Sitter space

    Full text link
    In this paper we recall the construction of Doubly Special Relativity (DSR) as a theory with energy-momentum space being the four dimensional de Sitter space. Then the bases of the DSR theory can be understood as different coordinate systems on this space. We investigate the emerging geometrical picture of Doubly Special Relativity by presenting the basis independent features of DSR that include the non-commutative structure of space-time and the phase space algebra. Next we investigate the relation between our geometric formulation and the one based on quantum κ\kappa-deformations of the Poincar\'e algebra. Finally we re-derive the five-dimensional differential calculus using the geometric method, and use it to write down the deformed Klein-Gordon equation and to analyze its plane wave solutions.Comment: 26 pages, one formula (67) corrected; some remarks adde

    Contractions, deformations and curvature

    Full text link
    The role of curvature in relation with Lie algebra contractions of the pseudo-ortogonal algebras so(p,q) is fully described by considering some associated symmetrical homogeneous spaces of constant curvature within a Cayley-Klein framework. We show that a given Lie algebra contraction can be interpreted geometrically as the zero-curvature limit of some underlying homogeneous space with constant curvature. In particular, we study in detail the contraction process for the three classical Riemannian spaces (spherical, Euclidean, hyperbolic), three non-relativistic (Newtonian) spacetimes and three relativistic ((anti-)de Sitter and Minkowskian) spacetimes. Next, from a different perspective, we make use of quantum deformations of Lie algebras in order to construct a family of spaces of non-constant curvature that can be interpreted as deformations of the above nine spaces. In this framework, the quantum deformation parameter is identified as the parameter that controls the curvature of such "quantum" spaces.Comment: 17 pages. Based on the talk given in the Oberwolfach workshop: Deformations and Contractions in Mathematics and Physics (Germany, january 2006) organized by M. de Montigny, A. Fialowski, S. Novikov and M. Schlichenmaie
    corecore