26 research outputs found

    Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia

    Get PDF
    The variably serpentinized mantle peridotites of the Late Neoproterozoic Ess ophiolite (Western Saudi Arabia) are highly altered along shear zones and thrust planes to form erosion-resistant listvenites. The listvenites are distinguished petrographically and geochemically into three types: carbonate, silica-carbonate and silica (birbirite) listvenites. Geochemical analyses are consistent with expectations from petrography: carbonate listvenite is low in SiO₂ content but high in MgO, Fe₂O₃, and CaO relative to silica-carbonate and birbirite, which is remarkably high in SiO₂ at the expense of all other components. The total REE contents are low in silica-carbonate and carbonate listvenites but highly enriched in birbirite, with a large positive Eu anomaly. The host serpentinites have all the characteristics typically associated with highly depleted mantle harzburgite protoliths in supra-subduction fore-arc settings: bulk compositions are low in Al₂O₃ and CaO with high Mg# [molar Mg/(Mg + Fe)], relict Cr-spinel has high Cr# [molar Cr/(Cr + Al)] and low TiO₂, and relict olivine has high Mg# and NiO content. The Cr-spinel relics are also found in the listvenites; those in serpentinite and carbonate listvenites have significantly higher Mg# than those in silica-carbonate and birbirite, suggesting re-equilibration of Cr-spinel in the later phases of listvenitization. The varieties of listvenite capture successive stages of fluid-mediated replacement reactions. The carbonate listvenite appears to have developed syn-contemporaneously with serpentinization, whereas silica-carbonate listvenite and birbirite formed later. The listvenite formation resulted in leaching and removal of some components accompanied by deposition of others in the solid products, notably CO₃, SiO₂, REE (especially Eu), Au, Zn, As, Sb and K. Our data show that listvenitization concentrated gold at sub-economic to economic grades; measured gold concentrations in the host serpentinite are 0.5–1.7 ng/g, versus 4–2569 ng/g in carbonate listvenite, 43–3117 ng/g in silica-carbonate listvenite and 5–281 ng/g in birbirite. The listvenite deposits in the Jabal Ess area merit further exploration for gold

    The common origin and alteration history of the hypabyssal and volcanic phases of the Wadi Tarr albitite complex, southern Sinai, Egypt

    Get PDF
    New data and interpretations are presented for the igneous albitites of the Wadi Tarr area, southern Sinai, Egypt. The albitite masses are isolated in outcrop from any granitic intrusions and have intrusive contacts against the country rocks without any structural control. They have marginal zones of breccias with jigsaw-fit angular clasts suggesting explosive, in-situ formation. The albitites are of two types: the western, medium-grained, hypabyssal albitite and the eastern, fine-grained porphyritic albitite. The field relations suggest emplacement at different levels in a magmatic cupola: the hypabyssal texture and steeply dipping slope of the upper contact of the western albitite imply deeper emplacement whereas the gently dipping contacts and porphyritic texture of the eastern albitite masses indicate that they define the probable location of the cupola apex. Both types of albitites consist of albite (92–97%) with minor amounts of quartz, K-feldspar and biotite. The accessory minerals include Fe-oxides, augite, sulphides, zircon, rutile, xenotime, titanite, allanite and monazite. The whole-rock compositions of the hypabyssal and porphyritic albitites are closely related, but the porphyritic type has lower abundances of Sr, Ba, Y, Nb, Th and Zr. We show that the hypabyssal and porphyritic albitites have a common petrogenetic origin, most likely as late-stage cumulates from a fractionating, strongly alkaline A-type magma, consistent with the compositions of the mafic minerals. The source magma was probably a tephritic liquid; we use MELTS models to show that only a sufficiently alkaline magma follows a differentiation path that both avoids quartz saturation and encounters the alkali feldspar solvus, reaching a residual liquid in equilibrium with highly sodic feldspar. Although the MELTS results show a chemically consistent means of forming igneous albitite, they are incomplete in that physical segregation mechanisms are still required to isolate the albite from mafic minerals and or a low-temperature aqueous alteration stage is needed to leach K from the feldspar. Alteration surrounding the Wadi Tarr albitites is extensive and dominated by alkali metasomatism similar to fenitization. Alteration in the marginal breccia zone of the albitite is dominated by precipitation of amphibole and carbonate in veins and in the breccia matrix, whereas the volcanic country rocks show replacement of feldspars by sericite, carbonate and epidote as well as vein carbonate. The altered volcanic country rocks show lower concentrations of Fe_2O_3, Sr, Cu, Pb, Ba and Ce, accompanied by higher concentrations of Na2O and MgO compared to unaltered equivalent samples

    Petrogenesis of gold-bearing listvenites from the carbonatized mantle section of the Neoproterozoic Ess ophiolite, Western Arabian Shield, Saudi Arabia

    Get PDF
    The variably serpentinized mantle peridotites of the Late Neoproterozoic Ess ophiolite (Western Saudi Arabia) are highly altered along shear zones and thrust planes to form erosion-resistant listvenites. The listvenites are distinguished petrographically and geochemically into three types: carbonate, silica-carbonate and silica (birbirite) listvenites. Geochemical analyses are consistent with expectations from petrography: carbonate listvenite is low in SiO₂ content but high in MgO, Fe₂O₃, and CaO relative to silica-carbonate and birbirite, which is remarkably high in SiO₂ at the expense of all other components. The total REE contents are low in silica-carbonate and carbonate listvenites but highly enriched in birbirite, with a large positive Eu anomaly. The host serpentinites have all the characteristics typically associated with highly depleted mantle harzburgite protoliths in supra-subduction fore-arc settings: bulk compositions are low in Al₂O₃ and CaO with high Mg# [molar Mg/(Mg + Fe)], relict Cr-spinel has high Cr# [molar Cr/(Cr + Al)] and low TiO₂, and relict olivine has high Mg# and NiO content. The Cr-spinel relics are also found in the listvenites; those in serpentinite and carbonate listvenites have significantly higher Mg# than those in silica-carbonate and birbirite, suggesting re-equilibration of Cr-spinel in the later phases of listvenitization. The varieties of listvenite capture successive stages of fluid-mediated replacement reactions. The carbonate listvenite appears to have developed syn-contemporaneously with serpentinization, whereas silica-carbonate listvenite and birbirite formed later. The listvenite formation resulted in leaching and removal of some components accompanied by deposition of others in the solid products, notably CO₃, SiO₂, REE (especially Eu), Au, Zn, As, Sb and K. Our data show that listvenitization concentrated gold at sub-economic to economic grades; measured gold concentrations in the host serpentinite are 0.5–1.7 ng/g, versus 4–2569 ng/g in carbonate listvenite, 43–3117 ng/g in silica-carbonate listvenite and 5–281 ng/g in birbirite. The listvenite deposits in the Jabal Ess area merit further exploration for gold

    Geomechanical assessment of the Lower Turonian AR-F limestone Member, Abu Gharadig Field, Egypt: Implications for unconventional resource development

    Get PDF
    This study evaluates the unconventional reservoir geomechanical characteristics of the Lower Turonian Abu Roash-F (AR-F) carbonates from the Abu Gharadig field, onshore Egypt, which has not been attempted before. The interval dominantly consists of planktic foraminifera and micrite matrix. The AR-F marine carbonate is organic-rich (0.59–3.57 wt% total organic carbon), thermally mature (435–441°C Tmax) and falls within the oil generation window. The studied interval is very tight with up to 2.6% porosity and 0.0016–0.0033 mD permeability with the wireline log-based brittleness index ranging between 0.39–0.72 which indicates a less brittle to brittle nature. AR-F exhibits a hydrostatic pore pressure gradient with minimum horizontal stress (Shmin) varying between 0.66–0.76 PSI/ft. Safe wellbore trajectory analysis was performed for deviated and horizontal wells to infer the mud pressure gradients required to avoid wellbore instabilities. Based on the inferred in-stress magnitudes and considering an NNE regional maximum horizontal stress orientation, none of the fractures are found to be critically stressed at present day. To produce from the AR-F, hydraulic fracturing is necessary, and we infer a minimum pore pressure increment threshold of 1390 PSI by fluid injection to reactivate the vertical fractures parallel to regional minimum horizontal stress azimuth

    Multiproxy analyses of paleoenvironmental and paleoceanographic changes during the Danian-Selandian in East Central Sinai: An integrated stable isotope and planktic foraminiferal data

    Get PDF
    Forty-three planktic foraminifera samples from the Themed section (East Central Sinai; Egypt) spanning the Zone Parvularugoglobigerina eugubina (Pα) to the Subzone Acarinina subsphaerica (P4b) have been studied. Data from δ13C, δ18O, and planktic foraminifera-based species diversity, depth habitat, preference for warm and cool surface waters, and nutrients (oligotrophic, mesotrophic, and eutrophic conditions) are used to infer paleoenvironmental changes throughout the Danian‒Selandian duration. Based on quantitative multivariate analyses (hierarchical cluster and principal component), three distinct intervals were recognized, Interval 1 (Pα‒P1b), Interval 2 (P1c‒P3a), and Interval 3 (P3a‒P4b). Interval 2 is further subdivided into three subintervals, 2a (part P1c), 2b (part P1c), and 2c (P2‒P3a). Two δ13C events are identified, Dan-C2 and Latest Danian Event (LDE) and elaborated concerning paleoenvironmental changes. During the earliest Danian planktic foraminiferal Pα Zone, moderately shallow and eutrophic conditions prevailed with cool surface waters and a shallow thermocline. Comparable conditions were still prevailing during P1a‒P1b, but with slightly deeper and mesotrophic conditions and a somewhat deeper thermocline and reduced stratification. P1b‒P1c exhibits a major shift from Eoglobigerina to Subbotina‒ Parasubbotina with cooler surface waters and moderate mesotrophic conditions. For Subzone P1c (upper part), slightly mesotrophic conditions were inferred, whereas for P2‒P3a (lower part), surface water warming and thermocline shallowing events have inferred with increased oligotrophic conditions. The Latest Danian Event (mid-P3a) is marked by a dramatic negative δ13C excursion, warm waters, increased mesotrophic conditions, and enhanced stratification. The dominance of Morozovella, Acarinina, and Igorina specify warm and oligotrophic conditions for subzones P3b‒P4b

    Evaluation of metals that are potentially toxic to agricultural surface soils, using statistical analysis, in northwestern Saudi Arabia

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Heavy metals in agricultural soils enter the food chain when taken up by plants. The main purpose of this work is to determine metal contamination in agricultural farms in northwestern Saudi Arabia. Fifty surface soil samples were collected from agricultural areas. The study focuses on the geochemical behavior of As, Cd, Co, Cr, Cu, Hg, Pb and Zn, and determines the enrichment factor and geoaccumulation index. Multivariate statistical analysis, including principle component analysis and cluster analysis, is also applied to the acquired data. The study shows considerable variation in the concentrations of the analyzed metals in the studied soil samples. This variation in concentration is attributed to the intensity of agricultural activities and, possibly, to nearby fossil fuel combustion activities, as well as to traffic flows from highways and local roads. Multivariate analysis suggests that As, Cd, Hg and Pb are associated with anthropogenic activities, whereas Co, Cr, Cu and Zn are mainly controlled by geogenic activities. Hg and Pb show the maximum concentration in the analyzed samples as compared to the background concentration

    Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a possible mantle-derived A-type magma

    No full text
    The Abu Rumeil syenitic rocks represent the inner ring dyke of the Katherina Ring complex, southern Sinai, Egypt. They are divided petrologically into two types, alkali feldspar syenite and quartz syenite. The mineralogy and geochemistry of the syenites indicate an alkaline nature with a shoshonitic affinity. Although rare mafic xenocrysts overgrown by primary K-feldspars and overlapping rare earth element (REE) patterns indicate some role for crustal contamination, the trace element chemistry shows a dominant mantle contribution. The geochronology and field relations imply that the Abu Rumeil syenites were emplaced in a post-collisional, within-plate tectonic setting, yet they express the enrichments in large-ion lithophile elements relative to high field strength elements generally characteristic of subduction influence. We suggest that this signature is inherited from partial melting of a lithospheric mantle source previously affected by subduction during assembly of the Arabian-Nubian Shield. Little evidence of the early evolution of the suite is preserved; there are no associated mafic rocks. We therefore restrict our attention to a petrogenetic model that can explain the relations among the observed felsic composition. The REE patterns of all samples are enriched in light REE and fractionated, but it is notable that there are small positive Eu anomalies in the alkali-feldspar syenites contrasting with small negative Eu anomalies in the quartz syenites. Positive Eu anomalies suggest a cumulate nature for the alkali-feldspar syenites; there are also breaks in the slopes of most variation trends between the alkali-feldspar syenites and the quartz syenites. The general trends in all major oxides and trace elements within the suite can be modeled by fractional crystallization of feldspars—with smaller roles for pyroxene, biotite, apatite, and Fe-Ti oxides—from an intermediate liquid to form the quartz syenites and by assimilation of the near-liquidus phases into the same starting liquid to form the alkali feldspar syenites. The geothermobarometry of pyroxenes and amphiboles suggests shallow emplacement (<10 km depth) and crystallization temperatures ranging from 1100 °C down to 800 °C

    Contamination and health risk assessment of surface sediments along Ras Abu Ali Island, Saudi Arabia

    No full text
    The coastline of the Arabian Gulf attracts people throughout the year for tourism and fishing activities. The present work aimed to document the contamination and human health assessment of heavy metals (HMs) in 34 surface sediment samples collected along Ras Abu Ali coastline, Saudi Arabia. Enrichment factor (EF), contamination factor (CF), and sediment quality guideline (SQG) were calculated to estimate the sediment contamination, while the hazard index (HI), cancer risk (CR), and total lifetime cancer risk (LCR) were determined for human health assessment via ingestion and dermal contact pathways on both adults and children. The averages of the HMs (μg/g dry weight) were in the following order: Fe (4808) > Ni (13.00) > Zn (6.89) > Cr (7.86) > V (6.67) > Cu (4.14) > Pb (3.50) > As (2.47) > Co (1.43). Results of EF indicated minor enrichment with Ni, Pb, and As, and no enrichment with the remaining HMs. Based on CF, the coastal sediments of Ras Abu Ali showed low contamination with HMs. Reported values of As, Cr, Cu, Pb, and Zn were lower than the ISQG-Low values, however, 4 samples of Ni reported values between the ISQG-Low and ISQG-High values, indicating some anthropogenic effects with Ni. HI values were higher among children in comparison to adults, suggesting that children were at higher risk of non-carcinogenic exposure than adults. LCR values indicated that no significant health hazards for people inhabited the study area from the carcinogenic Pb, Cr, and As

    Late Ediacaran post-collisional A-type syenites with shoshonitic affinities, northern Arabian-Nubian Shield: a possible mantle-derived A-type magma

    No full text
    The Abu Rumeil syenitic rocks represent the inner ring dyke of the Katherina Ring complex, southern Sinai, Egypt. They are divided petrologically into two types, alkali feldspar syenite and quartz syenite. The mineralogy and geochemistry of the syenites indicate an alkaline nature with a shoshonitic affinity. Although rare mafic xenocrysts overgrown by primary K-feldspars and overlapping rare earth element (REE) patterns indicate some role for crustal contamination, the trace element chemistry shows a dominant mantle contribution. The geochronology and field relations imply that the Abu Rumeil syenites were emplaced in a post-collisional, within-plate tectonic setting, yet they express the enrichments in large-ion lithophile elements relative to high field strength elements generally characteristic of subduction influence. We suggest that this signature is inherited from partial melting of a lithospheric mantle source previously affected by subduction during assembly of the Arabian-Nubian Shield. Little evidence of the early evolution of the suite is preserved; there are no associated mafic rocks. We therefore restrict our attention to a petrogenetic model that can explain the relations among the observed felsic composition. The REE patterns of all samples are enriched in light REE and fractionated, but it is notable that there are small positive Eu anomalies in the alkali-feldspar syenites contrasting with small negative Eu anomalies in the quartz syenites. Positive Eu anomalies suggest a cumulate nature for the alkali-feldspar syenites; there are also breaks in the slopes of most variation trends between the alkali-feldspar syenites and the quartz syenites. The general trends in all major oxides and trace elements within the suite can be modeled by fractional crystallization of feldspars—with smaller roles for pyroxene, biotite, apatite, and Fe-Ti oxides—from an intermediate liquid to form the quartz syenites and by assimilation of the near-liquidus phases into the same starting liquid to form the alkali feldspar syenites. The geothermobarometry of pyroxenes and amphiboles suggests shallow emplacement (<10 km depth) and crystallization temperatures ranging from 1100 °C down to 800 °C

    Benthic foraminifera as bioindicators of anthropogenic pollution in the Red Sea Coast, Saudi Arabia

    No full text
    The concentrations of Fe, Mn, Cu, Ni, Zn, Pb, Cr, Co, and Cd were measured in the tests of two foraminiferal species (Sorites orbibulus and Peneroplis planatus) using ICP-MS to assess the marine contamination. Iron was the most abundant metal (3294 μg/g), followed by Mn (133 μg/g), Cu (34.7 μg/g), Zn (28.3 μg/g), Cr (25 μg/g), Ni (18.9 μg/g), Pb (12.2 μg/g), Co (9.5 μg/g), and Cd (0.85 μg/g). The values enrichment factor, geo-accumulation index, and contamination factor show that the foraminiferal shells are enriched in (Cd, Cu, Pb) posing an ecological risk. Iron shows highest concentration amongst the heavy metals recorded in the study shells, however, shows low concentration in comparison with surrounding areas of Red Sea coast in Saudi Arabia and Egypt. Other heavy metals show higher concentrations than those recorded in Egypt and Saudi Arabia. The elevated heavy metal concentrations in the foraminiferal tests may be attributed to the industrial and urban activities along Yanbu coast
    corecore