14 research outputs found

    The Burden of Escherichia coli Pathotypes among Diarrheic Farm Animals: A Possible Zoonotic Relevance

    No full text
    Pathogenic strains of Escherichia coli possess virulence factors that contribute to both intestinal and extraintestinal infections in both humans and animals. Farm animals can serve as a potential source for these types of E. coli strains. This study aimed to determine the virulence genes and related pathotypes of E. coli isolated from diarrheic farm animals and their public health importance. Rectal swabs were collected from 175 diarrheic farm animals (49 cattle, 69 sheep, and 57 goats). Samples were prepared for isolation of E. coli through enrichment in tryptic soya broth and then plating on Eosin methylene blue agar, whereas the identification of E. coli was performed based on colony morphology, biochemical tests, and molecular confirmation by PCR. Furthermore, the determination of the virulence factors associated with E. coli pathotypes was done by molecular technique to amplify the virulence genes including adhesins (sfa, papC, sepA, etrA, aer, feaG, fsaA, and eaeA), capsule synthesis (rfc), and toxins (cnf1, hlyA, eltA, estA, exhA, stx1, and stx2). Moreover, phylogenetic analysis was done via sequencing of the 16s rRNA genes from the strains that carry virulence genes, as well as the statistical analysis was done through the production of the hierarchically clustered heat map. Pathogenic E. coli was found in 39.4% of the examined animals. Fifteen out of sixteen virulence genes were detected among E. coli isolates from different farm animals, including cattle, sheep, and goats. ExPEC pathotype was predominated among cattle and sheep isolates whereas, ETEC pathotype is more frequent among goat isolates. The sequence analysis of 16s rRNA sequences revealed similarity between farm animal isolates and those from humans that were retrieved from GenBank. In conclusion, this study highlights the potential role of diarrheic farm animals in the epidemiology of pathogenic E. coli pathotypes which may have public health implications

    Molecular Detection of Toxigenic Clostridioides difficile among Diarrheic Dogs and Cats: A Mounting Public Health Concern

    No full text
    Nowadays, pet animals are known to be asymptomatic carriers of Clostridioidesdifficile. This study was conducted to investigate the burden of toxigenic C. difficile among diarrheic dogs and cats using direct PCR on fecal samples to reveal better insights about the epidemiology of such toxigenic strains referring to its public health significance. For this purpose, fecal samples were obtained from 58 dogs and 42 cats experiencing diarrhea. Following DNA extraction, the extracted DNA was examined for the occurrence of C. difficile as well as toxigenic strains through the detection of C. difficile 16S rRNA and toxin encoding genes (tcdA, tcdB, cdtA and cdtB) using PCR. Moreover, partial DNA sequencing of toxigenic strains retrieved from dog and cat was carried out. Of 100 examined diarrheic animals, 90 (90%) were C. difficile positive, including 93.1% and 85.7% of dogs and cats, respectively. In addition, toxigenic strains were detected in 13 animals, giving an overall prevalence 13% with the following prevalence rates among dogs and cats 12.1% and 14.3%, respectively. Furthermore, the phylogenetic analysis of the obtained sequence revealed high genetic relatedness of tcdA sequence obtained from a cat to strains of human diarrheic cases to point out the public health threat of such sequence. In conclusion, the direct detection of toxigenic C. difficile using PCR among dogs and cats highlights the potential role of household pets as a source for such strains to human contacts

    Leptospirosis in animals and human contacts in Egypt: broad range surveillance

    No full text
    INTRODUCTION: Leptospirosis is a re-emerging zoonotic disease of humans and animals worldwide. The disease is caused by pathogenic species of the genus Leptospira. These organisms are maintained in nature via chronic renal infection of carrier animals, which excrete the organisms in their urine. Humans become infected through direct or indirect exposure to infected animals and their urine or through contact with contaminated water and soil. This study was conducted to investigate Leptospira infections as a re-emerging zoonosis that has been neglected in Egypt. METHODS: Samples from 1,250 animals (270 rats, 168 dogs, 625 cows, 26 buffaloes, 99 sheep, 14 horses, 26 donkeys and 22 camels), 175 human contacts and 45 water sources were collected from different governorates in Egypt. The samples were collected from different body sites and prepared for culture, PCR and the microscopic agglutination test (MAT). RESULTS: The isolation rates of Leptospira serovars were 6.9%, 11.3% and 1.1% for rats, dogs and cows, respectively, whereas the PCR results revealed respective detection rates of 24%, 11.3% and 1.1% for rats, dogs and cows. Neither the other examined animal species nor humans yielded positive results via these two techniques. Only six Leptospira serovars (Icterohaemorrhagiae, Pomona, Canicola, Grippotyphosa, Celledoni and Pyrogenes) could be isolated from rats, dogs and cows. Moreover, the seroprevalence of leptospiral antibodies among the examined humans determined using MAT was 49.7%. CONCLUSIONS: The obtained results revealed that rats, dogs and cows were the most important animal reservoirs for leptospirosis in Egypt, and the high seroprevalence among human contacts highlights the public health implications of this neglected zoonosis

    Leptospirosis in animals and human contacts in Egypt: broad range surveillance

    No full text
    INTRODUCTION: Leptospirosis is a re-emerging zoonotic disease of humans and animals worldwide. The disease is caused by pathogenic species of the genus Leptospira. These organisms are maintained in nature via chronic renal infection of carrier animals, which excrete the organisms in their urine. Humans become infected through direct or indirect exposure to infected animals and their urine or through contact with contaminated water and soil. This study was conducted to investigate Leptospira infections as a re-emerging zoonosis that has been neglected in Egypt. METHODS: Samples from 1,250 animals (270 rats, 168 dogs, 625 cows, 26 buffaloes, 99 sheep, 14 horses, 26 donkeys and 22 camels), 175 human contacts and 45 water sources were collected from different governorates in Egypt. The samples were collected from different body sites and prepared for culture, PCR and the microscopic agglutination test (MAT). RESULTS: The isolation rates of Leptospira serovars were 6.9%, 11.3% and 1.1% for rats, dogs and cows, respectively, whereas the PCR results revealed respective detection rates of 24%, 11.3% and 1.1% for rats, dogs and cows. Neither the other examined animal species nor humans yielded positive results via these two techniques. Only six Leptospira serovars (Icterohaemorrhagiae, Pomona, Canicola, Grippotyphosa, Celledoni and Pyrogenes) could be isolated from rats, dogs and cows. Moreover, the seroprevalence of leptospiral antibodies among the examined humans determined using MAT was 49.7%. CONCLUSIONS: The obtained results revealed that rats, dogs and cows were the most important animal reservoirs for leptospirosis in Egypt, and the high seroprevalence among human contacts highlights the public health implications of this neglected zoonosis

    Prevalence and phylogenetic characterization of Listeria monocytogenes isolated from processed meat marketed in Egypt

    Get PDF
    Because of its high case fatality rate, listeriosis locates among the most frequent causes of death due to food-borne illness. In this study, a total of 150 processed meat samples were collected from Giza Governorate, Egypt. Phenotypic and genotypic identification of Listeria monocytogenes was performed using PCR incorporating listeriolysin O virulence gene hlyA followed by DNA sequence analysis. L. monocytogenes was confirmed in 4% of each of beef burger, minced meat, and luncheon samples. Phylogenetic analysis showed that all the six Egyptian isolates have high homology with Colombian isolate (EF030606), except one Egyptian isolate which showed high homology with Indian isolate (EU840690). The public health significance of these pathogens as well as recommended sanitary measures were discussed
    corecore