101 research outputs found
Effective Knowledge Management in Projects: Characteristics and Integration
The integration of effective Knowledge Management (KM) in projects is founded on numerous factors. These factors include available resources, KM tools, leadership, organizational culture, and project objectives and goals among others. It is very important to set priorities for these considerations and factors in order to ensure effective KM integration into projects. Despite the fact that Project Knowledge Management (PKM) is characterized by numerous beneficial implications, it is also associated with risks. These risks include potential delays in project implementation and budget deficits. The Project Knowledge Management Life Cycle (PKMLC) includes five main stages: the knowledge creation, knowledge storage, knowledge dissemination, knowledge learning, and knowledge improvement. Each phase is essential towards the attainment of overall efficiency in the integration of KM into projects. Keywords: Knowledge Management (KM); Project Knowledge Management Life Cycle (PKMLC); Project Knowledge Management (PKM); Project Knowledge Management Integration (PKMI); Project Knowledge Management Risks and Mitigations; Project Knowledge Management Tools and Techniques.
Artificial Intelligence Chatbots: A Survey of Classical versus Deep Machine Learning Techniques
Artificial Intelligence (AI) enables machines to be intelligent, most importantly using Machine Learning (ML) in which machines are trained to be able to make better decisions and predictions. In particular, ML-based chatbot systems have been developed to simulate chats with people using Natural Language Processing (NLP) techniques. The adoption of chatbots has increased rapidly in many sectors, including, Education, Health Care, Cultural Heritage, Supporting Systems and Marketing, and Entertainment. Chatbots have the potential to improve human interaction with machines, and NLP helps them understand human language more clearly and thus create proper and intelligent responses. In addition to classical ML techniques, Deep Learning (DL) has attracted many researchers to develop chatbots using more sophisticated and accurate techniques. However, research has paid chatbots have widely been developed for English, there is relatively less research on Arabic, which is mainly due to its complexity and lack of proper corpora compared to English. Though there have been several survey studies that reviewed the state-of-the-art of chatbot systems, these studies (a) did not give a comprehensive overview of how different the techniques used for Arabic chatbots in comparison with English chatbots; and (b) paid little attention to the application of ANN for developing chatbots. Therefore, in this paper, we conduct a literature survey of chatbot studies to highlight differences between (1) classical and deep ML techniques for chatbots; and (2) techniques employed for Arabic chatbots versus those for other languages. To this end, we propose various comparison criteria of the techniques, extract data from collected studies accordingly, and provide insights on the progress of chatbot development for Arabic and what still needs to be done in the future
Arabic Educational Neural Network Chatbot
Chatbots (machine-based conversational systems) have grown in popularity in recent years. Chatbots powered by artificial intelligence (AI) are sophisticated technologies that replicate human communication in a range of natural languages. A chatbot’s primary purpose is to interpret user inquiries and give relevant, contextual responses. Chatbot success has been extensively reported in a number of widely spoken languages; nonetheless, chatbots have not yet reached the predicted degree of success in Arabic. In recent years, several academics have worked to solve the challenges of creating Arabic chatbots. Furthermore, the development of Arabic chatbots is critical to our attempts to increase the use of the language in academic contexts. Our objective is to install and create an Arabic chatbot that will help the Arabic language in the area of education. To begin implementing the chabot, we collected datasets from Arabic educational websites and had to prepare these data using the NLP methods. We then used this data to train the system using a neural network model to create an Arabic neural network chabot. Furthermore, we found relevant research, conducted earlier investigations, and compared their findings by searching Google scholar and looking through the linked references. Data was gathered and saved in a json file. Finally, we programmed the chabot and the models in Python. As a consequence, an Arabic chatbot answers all questions about educational regulations in the United Arab Emirates
Extracting Synonyms from Bilingual Dictionaries
We present our progress in developing a novel algorithm to extract synonyms
from bilingual dictionaries. Identification and usage of synonyms play a
significant role in improving the performance of information access
applications. The idea is to construct a translation graph from translation
pairs, then to extract and consolidate cyclic paths to form bilingual sets of
synonyms. The initial evaluation of this algorithm illustrates promising
results in extracting Arabic-English bilingual synonyms. In the evaluation, we
first converted the synsets in the Arabic WordNet into translation pairs (i.e.,
losing word-sense memberships). Next, we applied our algorithm to rebuild these
synsets. We compared the original and extracted synsets obtaining an F-Measure
of 82.3% and 82.1% for Arabic and English synsets extraction, respectively.Comment: In Proceedings - 11th International Global Wordnet Conference
(GWC2021). Global Wordnet Association (2021
A systematic review on sequence-to-sequence learning with neural network and its models
We develop a precise writing survey on sequence-to-sequence learning with neural network and its models. The primary aim of this report is to enhance the knowledge of the sequence-to-sequence neural network and to locate the best way to deal with executing it. Three models are mostly used in sequence-to-sequence neural network applications, namely: recurrent neural networks (RNN), connectionist temporal classification (CTC), and attention model. The evidence we adopted in conducting this survey included utilizing the examination inquiries or research questions to determine keywords, which were used to search for bits of peer-reviewed papers, articles, or books at scholastic directories. Through introductory hunts, 790 papers, and scholarly works were found, and with the assistance of choice criteria and PRISMA methodology, the number of papers reviewed decreased to 16. Every one of the 16 articles was categorized by their contribution to each examination question, and they were broken down. At last, the examination papers experienced a quality appraisal where the subsequent range was from 83.3% to 100%. The proposed systematic review enabled us to collect, evaluate, analyze, and explore different approaches of implementing sequence-to-sequence neural network models and pointed out the most common use in machine learning. We followed a methodology that shows the potential of applying these models to real-world applications
A morphological generator for the indexing of Arabic audio
This paper presents a novel Arabic morphological generator (AMG) for Modern Standard Arabic (MSA) which is designed and implemented using Prolog. The AMG is used to generate inflected forms of words used for the indexing of Arabic audio. These words are also the relevant terms in the Arab authority system (library information retrieval system) used in this study. The AMG generates inflected Arabic words from the root according to pre-specified morphological features that can be extended as needed. The Arabic word is represented as a feature structure which is handled through unification during the morphological generation process. The inflected forms can then be inserted automatically into a speech recognition grammar which is used to identify these words in an audio sequence or utterance
Agent Productivity Modeling in a Call Center Domain Using Attentive Convolutional Neural Networks
Article numbre 5489Measuring the productivity of an agent in a call center domain is a challenging task.
Subjective measures are commonly used for evaluation in the current systems. In this paper,
we propose an objective framework for modeling agent productivity for real estate call centers
based on speech signal processing. The problem is formulated as a binary classification task using
deep learning methods. We explore several designs for the classifier based on convolutional neural
networks (CNNs), long-short-term memory networks (LSTMs), and an attention layer. The corpus
consists of seven hours collected and annotated from three different call centers. The result shows
that the speech-based approach can lead to significant improvements (1.57% absolute improvements)
over a robust text baseline system
A systematic review of text classification research based on deep learning models in Arabic language
Classifying or categorizing texts is the process by which documents are classified into groups by subject, title, author, etc. This paper undertakes a systematic review of the latest research in the field of the classification of Arabic texts. Several machine learning techniques can be used for text classification, but we have focused only on the recent trend of neural network algorithms. In this paper, the concept of classifying texts and classification processes are reviewed. Deep learning techniques in classification and its type are discussed in this paper as well. Neural networks of various types, namely, RNN, CNN, FFNN, and LSTM, are identified as the subject of study. Through systematic study, 12 research papers related to the field of the classification of Arabic texts using neural networks are obtained: for each paper the methodology for each type of neural network and the accuracy ration for each type is determined. The evaluation criteria used in the algorithms of different neural network types and how they play a large role in the highly accurate classification of Arabic texts are discussed. Our results provide some findings regarding how deep learning models can be used to improve text classification research in Arabic language
- …