20 research outputs found

    Detectors and Focal Plane Modules for Weather Satellites

    Get PDF
    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 micron band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lamba(sub c) approximately 5 micron at 98K), MWIR (lambda(sub c) approximately 9 micron at 98K) and LWIRs (lamba(sub c) approximately 15.5 micron at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 micron to 8.6 micron and (iii) a 9.6 micron to 13.3 micron, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 micron to 0.86 micron channels. The thirteen channels above 1 micron are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 micron to 9.61 micron channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 micron to 13.3 micron channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the same architecture used for the CrIS detectors CrIS detectors are 850 micron diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength are 5.0E+10 Jones for LWIR, 9.3E+10 Jones for MWIR and 3.0E+11 Jones for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz(exp 1/2)/W at 14.0 micron, 1.0 x 10(exp 11) cm-Hz(exp 1/2)/W at 8.0 micron and 3.1 x 10(exp 11) cm-Hz(exp 1/2)/W at 4.64 micron

    Detectors and Focal Plane Modules for Weather Instruments

    Get PDF
    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lambda(sub c) (is) approximately 5 micrometers at 98 K), MWIR (lambda(sub c) (is) approximately 9 micrometers at 98 K) and LWIRs (lambda(sub c) (is) approximately 15.4 m at 81 K) bands in three Focal Plane Array Assemblies (FPAAs). CrIS detectors are 850 micrometers diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the detectors fabricated in a modified Double Layer Planar Heterostructure (DLPH) architecture. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak 14.01 micrometers wavelength are greater than 5.0E+10 Jones for LWIR, greater than 7.5E+10 Jones at 8.26 micrometers for MWIR and greater than 3.0E+11 Jones at peak 4.64 micrometers wavelength for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz1/2/W at 14.0 micrometers, 9.6 x 10(exp 10) cm-Hz1/2/W at 8.0 micrometers and 3.4 x 10(exp 11) cm-Hz1/2/W at 4.64 micrometers

    Effect of sonic versus ultrasonic activation on aqueous solution penetration in root canal dentin.

    Full text link

    Observational evidence from direct current measurements for propagation of remotely forced waves on the shelf off the west coast of India

    Get PDF
    We use data from six Acoustic Doppler Current Profiler (ADCP) moorings deployed during March-September 2008 on the continental shelf and slope off Bhatkal, Goa, and Jaigarh on the central west coast of India to present evidence for poleward propagation of shelf or coastal-trapped waves (CTWs). Wave propagation is seen on the shelf in the 20-40-day, 10-14-day, and 3-5-day-period bands. The lag from south to north indicates that remote forcing is important even at periods as short as 4days. Using QuikSCAT wind data, we show that the contribution of remote forcing to the shelf West Indian Coastal Current (WICC) is significant even when the local alongshore wind is strong, as during the summer-monsoon onset during May-June, and forces a strong local response that masks the effect of remote forcing. Forced wave calculations using CTW theory show that remote forcing of the WICC is present at all times, but is most striking when the local winds are weak, as during March-April. The CTW calculations show that the source region for the remote forcing may extend beyond the west coast into the Gulf of Mannar between India and Sri Lanka. On the slope, propagation is seen only at the 4-day period. At higher periods, the slope WICC decorrelates rapidly along the coast, but upward phase propagation, implying downward propagation of energy associated with poleward propagation, is evident even at these higher periods

    Observed tidal currents on the continental shelf off the west coast of India

    No full text
    Observed currents from ADCPs, deployed at 100 m and 150 m depths, on the continental shelf at five different locations along the west coast of India, were used to study the characteristics of both barotropic and baroclinic tidal currents. The observations extended over a 6-month period (March–August), which includes two seasons, pre-monsoon (March–April) and southwest (SW) monsoon (May–August) during 2008, 2009 and 2011. Tidal ellipses, constructed for M2 and K1 constituents, show that barotropic tidal currents propagate in along-isobath direction at the southern shelf (off Kollam at about 9°N) and they are oriented more or less in a cross-isobath direction at the northern shelf locations (off Jaigarh and Mumbai at about 17°N and 20°N, respectively). Maximum cross-isobath tidal current is found at northern shelf locations (for instance, about 32 cm s−1 off Mumbai) than those in south (about 10 cm s−1 off Bhatkal, at 13°N). This could be due to the amplification of semidiurnal tidal currents from south to north of the shelf due to an increase in shelf widths towards north. The rotary spectra of baroclinic currents showed large peaks at semidiurnal and diurnal bands with a dominant clockwise rotation showing the presence of strong internal tidal currents. Semidiurnal variability occurs mainly in M2 and S2 and diurnal variability occurs mainly in K1 and O1. An increase in the amplitude of semidiurnal and diurnal internal tide is apparent when the stratification on the shelf increases from pre-monsoon to SW monsoon period. The presence of strong internal tide during May to August is attributed to increased seasonal stratification on the shelf. EOF analysis showed that the first three modes are sufficient to describe most of the variability in both semidiurnal and diurnal internal tides on the shelf, as they represent about 70–90% of total variance. The small scale vertical shear in the velocity field, induced by diurnal internal tide, is found to be larger than that induced by semidiurnal internal tide

    The global spread of misinformation on spiders

    No full text
    In the internet era, the digital architecture that keeps us connected and informed may also amplify the spread of misinformation. This problem is gaining global attention, as evidence accumulates that misinformation may interfere with democratic processes and undermine collective responses to environmental and health crises1,2. In an increasingly polluted information ecosystem, understanding the factors underlying the generation and spread of misinformation is becoming a pressing scientific and societal challenge3. Here, we studied the global spread of (mis-)information on spiders using a high-resolution global database of online newspaper articles on spider-human interactions, covering stories of spider-human encounters and biting events published from 2010-20204. We found that 47% of articles contained errors and 43% were sensationalist. Moreover, we show that the flow of spider-related news occurs within a highly interconnected global network and provide evidence that sensationalism is a key factor underlying the spread of misinformation
    corecore