105 research outputs found

    Genome-wide association study of hepatitis C virus- and cryoglobulin-related vasculitis

    Get PDF
    The host genetic basis of mixed cryoglobulin vasculitis is not well understood and has not been studied in large cohorts. A genome-wide association study was conducted among 356 hepatitis C virus (HCV) RNA-positive individuals with cryoglobulin-related vasculitis and 447 ethnically matched, HCV RNA-positive controls. All cases had both serum cryoglobulins and a vasculitis syndrome. A total of 899 641 markers from the Illumina HumanOmni1-Quad chip were analyzed using logistic regression adjusted for sex, as well as genetically determined ancestry. Replication of select single-nucleotide polymorphisms (SNPs) was conducted using 91 cases and 180 controls, adjusting for sex and country of origin. The most significant associations were identified on chromosome 6 near the NOTCH4 and MHC class II genes. A genome-wide significant association was detected on chromosome 6 at SNP rs9461776 (odds ratio=2.16, P=1.16E-07) between HLA-DRB1 and DQA1: this association was further replicated in additional independent samples (meta-analysis P=7.1 Γ— 10(-9)). A genome-wide significant association with cryoglobulin-related vasculitis was identified with SNPs near NOTCH4 and MHC Class II genes. The two regions are correlated and it is difficult to disentangle which gene is responsible for the association with mixed cryoglobulinemia vasculitis in this extended major histocompatibility complex region

    Fine-mapping of genetic loci driving spontaneous clearance of hepatitis C virus infection

    Get PDF
    Approximately three quarters of acute hepatitis C (HCV) infections evolve to a chronic state, while one quarter are spontaneously cleared. Genetic predispositions strongly contribute to the development of chronicity. We have conducted a genome-wide association study to identify genomic variants underlying HCV spontaneous clearance using ImmunoChip in European and African ancestries. We confrmed two previously reported signifcant associations, in the IL28B/IFNL4 and the major histocompatibility complex (MHC) regions, with spontaneous clearance in the European population. We further fne-mapped the association in the MHC to a region of about 50 kilo base pairs, down from 1 mega base pairs in the previous study. Additional analyses suggested that the association in MHC is stronger in samples from North America than those from Europe

    Multi-ancestry fine mapping of interferon lambda and the outcome of acute hepatitis C virus infection

    Get PDF
    Clearance of acute infection with hepatitis C virus (HCV) is associated with the chr19q13.13 region containing the rs368234815 (TT/Ξ”G) polymorphism. We fine-mapped this region to detect possible causal variants that may contribute to HCV clearance. First, we performed sequencing of IFNL1-IFNL4 region in 64 individuals sampled according to rs368234815 genotype: TT/clearance (N = 16) and Ξ”G/persistent (N = 15) (genotype-outcome concordant) or TT/persistent (N = 19) and Ξ”G/clearance (N = 14) (discordant). 25 SNPs had a difference in counts of alternative allele >5 between clearance and persistence individuals. Then, we evaluated those markers in an association analysis of HCV clearance conditioning on rs368234815 in two groups of European (692 clearance/1 025 persistence) and African ancestry (320 clearance/1 515 persistence) individuals. 10/25 variants were associated (P < 0.05) in the conditioned analysis leaded by rs4803221 (P value = 4.9 × 10βˆ’04) and rs8099917 (P value = 5.5 × 10βˆ’04). In the European ancestry group, individuals with the haplotype rs368234815Ξ”G/rs4803221C were 1.7Γ— more likely to clear than those with the rs368234815Ξ”G/rs4803221G haplotype (P value = 3.6 × 10βˆ’05). For another nearby SNP, the haplotype of rs368234815Ξ”G/rs8099917T was associated with HCV clearance compared to rs368234815Ξ”G/rs8099917G (OR: 1.6, P value = 1.8 × 10βˆ’04). We identified four possible causal variants: rs368234815, rs12982533, rs10612351 and rs4803221. Our results suggest a main signal of association represented by rs368234815, with contributions from rs4803221, and/or nearby SNPs including rs8099917

    Therapy with un-engineered naΓ―ve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer remains the leading cause of cancer-related mortality despite continuous efforts to find effective treatments. Data from the American Cancer Society indicate that while the overall incidence of lung cancer is declining, it continues to rise in women. Stem cell-based therapy has been an emerging strategy to treat various diseases. The purpose of this paper is to determine the efficacy of an intrinsic anti-cancer effect of rat umbilical cord matrix stem cells (UCMSCs) on lung cancer.</p> <p>Methods</p> <p>A mouse syngeneic lung carcinoma model was used to test the basic ability of UCMSCs to control the growth of lung cancer. Lung tumors were experimentally induced by tail vein administration of Lewis lung carcinoma (LLC) cells derived from the lung of C57BL/6 mouse. Rat UCMSCs were then administered intratracheally five days later or intravenously on days 5 and 7. The tumor burdens were determined by measuring lung weight three weeks after the treatment.</p> <p>Results</p> <p>Co-culture of rat UCMSCs with LLC significantly attenuated the proliferation of LLC cells as monitored by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), a tetrazole cell proliferation assay, thymidine uptake, and direct cell counts. <it>In vitro </it>colony assays with rat UCMSCs as feeder layers markedly reduced LLC colony size and number. Co-culture of rat UCMSCs with LLCs causes G0/G1 arrest of cancer cells. This is evident in the decrease of cyclin A and CDK2 expression. The <it>in vivo </it>studies showed that rat UCMSC treatment significantly decreased tumor weight and the total tumor mass. Histological study revealed that intratracheally or systemically administered rat UCMSCs homed to tumor areas and survived for at least 3 weeks without any evidence of differentiation or adverse effects.</p> <p>Conclusions</p> <p>These results indicate that rat UCMSCs alone remarkably attenuate the growth of lung carcinoma cells <it>in vitro </it>and in a mouse syngeneic lung carcinoma graft model and could be used for targeted cytotherapy for lung cancer.</p

    Human Bone Marrow Mesenchymal Stem Cells Display Anti-Cancer Activity in SCID Mice Bearing Disseminated Non-Hodgkin's Lymphoma Xenografts

    Get PDF
    Abstract BACKGROUND: Although multimodality treatment can induce high rate of remission in many subtypes of non-Hodgkin's lymphoma (NHL), significant proportions of patients relapse with incurable disease. The effect of human bone marrow (BM) mesenchymal stem cells (MSC) on tumor cell growth is controversial, and no specific information is available on the effect of BM-MSC on NHL. METHODOLOGY/PRINCIPAL FINDINGS: The effect of BM-MSC was analyzed in two in vivo models of disseminated non-Hodgkin's lymphomas with an indolent (EBV(-) Burkitt-type BJAB, median survival = 46 days) and an aggressive (EBV(+) B lymphoblastoid SKW6.4, median survival = 27 days) behavior in nude-SCID mice. Intra-peritoneal (i.p.) injection of MSC (4 days after i.p. injection of lymphoma cells) significantly increased the overall survival at an optimal MSC:lymphoma ratio of 1:10 in both xenograft models (BJAB+MSC, median survival = 58.5 days; SKW6.4+MSC, median survival = 40 days). Upon MSC injection, i.p. tumor masses developed more slowly and, at the histopathological observation, exhibited a massive stromal infiltration coupled to extensive intra-tumor necrosis. In in vitro experiments, we found that: i) MSC/lymphoma co-cultures modestly affected lymphoma cell survival and were characterized by increased release of pro-angiogenic cytokines with respect to the MSC, or lymphoma, cultures; ii) MSC induce the migration of endothelial cells in transwell assays, but promoted endothelial cell apoptosis in direct MSC/endothelial cell co-cultures. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that BM-MSC exhibit anti-lymphoma activity in two distinct xenograft SCID mouse models of disseminated NHL

    A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer

    Get PDF
    Purpose: To characterize the cardiovascular profile of sorafenib, a multitargeted kinase inhibitor, in patients with advanced cancer. Methods: Fifty-three patients with advanced cancer received oral sorafenib 400 mg bid in continuous 28-day cycles in this open-label study. Left ventricular ejection fraction (LVEF) was evaluated using multigated acquisition scanning at baseline and after 2 and 4 cycles of sorafenib. QT/QTc interval on the electrocardiograph (ECG) was measured in triplicate with a Holter 12-lead ECG at baseline and after 1 cycle of sorafenib. Heart rate (HR) and blood pressure (BP) were obtained in duplicate at baseline and after 1 and 4 cycles of sorafenib. Plasma pharmacokinetic data were obtained for sorafenib and its 3 main metabolites after 1 and 4 cycles of sorafenib. Results: LVEF (SD) mean change from baseline was -0.8 (Β±\pm8.6) LVEF(%) after 2 cycles (n=31) and -1.2 Β±\pm7.8) LVEF(%) after 4 cycles of sorafenib (n=24). The QT/QTc mean changes from baseline observed at maximum sorafenib concentrations (tmaxt_{max}) after 1 cycle (n=31) were small (QTcB: 4.2 ms; QTcF: 9.0 ms). Mean changes observed after 1 cycle in BP (n=31) and HR (n=30) at maximum sorafenib concentrations (tmaxt_{max}) were moderate (up to 11.7 mm Hg and -6.6 bpm, respectively). No correlation was found between the AUC and (CmaxC_{max}) of sorafenib and its main metabolites and any cardiovascular parameters. Conclusions: The effects of sorafenib on changes in QT/QTc interval on the ECG, LVEF, BP, and HR were modest and unlikely to be of clinical significance in the setting of advanced cancer treatment

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations

    Get PDF
    The dose-delivery schedule of conventional chemotherapy, which determines its efficacy and toxicity, is based on the maximum tolerated dose. This strategy has lead to cure and disease control in a significant number of patients but is associated with significant short-term and long-term toxicity. Recent data demonstrate that moderately low-dose chemotherapy may be efficiently combined with immunotherapy, particularly with dendritic cell (DC) vaccines, to improve the overall therapeutic efficacy. However, the direct effects of low and ultra-low concentrations on DCs are still unknown. Here we characterized the effects of low noncytotoxic concentrations of different classes of chemotherapeutic agents on human DCs in vitro. DCs treated with antimicrotubule agents vincristine, vinblastine, and paclitaxel or with antimetabolites 5-aza-2-deoxycytidine and methotrexate, showed increased expression of CD83 and CD40 molecules. Expression of CD80 on DCs was also stimulated by vinblastine, paclitaxel, azacytidine, methotrexate, and mitomycin C used in low nontoxic concentrations. Furthermore, 5-aza-2-deoxycytidine, methotrexate, and mitomycin C increased the ability of human DCs to stimulate proliferation of allogeneic T lymphocytes. Thus, our data demonstrate for the first time that in low noncytotoxic concentrations chemotherapeutic agents do not induce apoptosis of DCs, but directly enhance DC maturation and function. This suggests that modulation of human DCs by noncytotoxic concentrations of antineoplastic drugs, i.e. chemomodulation, might represent a novel approach for up-regulation of functional activity of resident DCs in the tumor microenvironment or improving the efficacy of DCs prepared ex vivo for subsequent vaccinations
    • …
    corecore