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Abstract

Objectives—The host genetic basis of mixed cryoglobulin vasculitis is not well understood and 

has not been studied in large cohorts. A genome-wide association study was conducted among 356 
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HCV RNA positive individuals with cryoglobulin-related vasculitis and 447 ethnically-matched, 

HCV RNA positive controls.

Methods—All cases had both serum cryoglobulins as well as a vasculitis syndrome. A total of 

899,641 markers from the Illumina HumanOmni1-Quad chip were analyzed using logistic 

regression adjusted for sex, as well as genetically-determined ancestry. Replication of select single 

nucleotide polymorphisms (SNPs) was conducted using 91 cases and 180 controls, adjusting for 

sex and country of origin.

Results—The most significant associations were identified on chromosome 6 near the NOTCH4 
and MHC class II genes. A genome-wide significant association was detected on chromosome 6 at 

SNP rs9461776 (OR= 2.16, p=1.16E-07) between HLA-DRB1 and DQA1: this association was 

further replicated in additional independent samples (meta-analysis p=7.1×10−9).

Conclusions—A genome-wide significant association with cryoglobulin related vasculitis was 

identified with SNPs near NOTCH4 and MHC Class II genes. The two regions are correlated and 

it is difficult to disentangle which gene is responsible for the association with MC vasculitis in this 

extended MHC region.
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Introduction

More than 185 million persons have been exposed to hepatitis C virus (HCV) and an 

estimated 130 million have chronic infection.1 Although the main target of this virus is the 

hepatocyte, HCV also appears to infect lymphocytes.2 Patients with chronic HCV infection 

typically produce anti-HCV IgG and can develop not only hepatic disease but also 

extrahepatic conditions amongst which the most frequent is mixed cryoglobulinemia 

(MC).3, 4 MC vasculitis is both an autoimmune and B-lymphoproliferative disorder, 

clinically benign, but evolving in 8–10% of cases into a frank non-Hodgkin’s lymphoma 

(NHL).5 Cryoglobulins are called “mixed” because they are composed of both IgGs and 

IgMs, which can be partially monoclonal (type II MC) or totally polyclonal (type III MC) 

and have rheumatoid factor (RF) activity.6–8 The prefix “cryo” refers to the property that 

these immune complexes precipitate at temperatures below 37° C and dissolve with 

rewarming.9

Approximately half of persons with chronic HCV infection have serum cryoglobulins, but 

only ~5% develop a clinically evident MC vasculitis syndrome.10, 11 This HCV-related, 

cryoglobulinemic vasculitis most commonly manifests in the skin (palpable purpura, 80%), 

joints (70%), peripheral nerves (60%), and kidney (immune complex nephritis, 20%).11 Due 

to the wide range of symptoms, MC vasculitis subjects are often clinically referred to 

different specialties, thus the actual prevalence may be underestimated.10

The clinical vasculitis syndrome can be improved or resolved by therapy directed at HCV 

infection and/or the B cell proliferation (e.g., with rituximab), inflammation (e.g., with 

corticosteroids), or serum cryogolbulins (e.g., with plasmapheresis).12–17 While, the 
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pathogenesis of the MC vasculitis syndrome is still unclear accumulating evidence points to 

a role for host genetics. There are no consistent differences in the infecting viruses of 

persons with chronic infection with or without the vasculitis syndrome.4, 18 There are 

marked ethnic and regional differences in the prevalence of MC vasculitis with the highest 

prevalence in persons of Mediterranean descent.10, 19–21 Pozzato and colleagues found only 

Mediterranean descent explained the much higher prevalence of MC vasculitis in Italy 

compared to Japan.22 In addition, several studies have identified associations between MC 

vasculitis and particular HLA alleles.23–27. The purpose of this investigation was to perform 

a genome-wide, multi-center study to investigate the host genetic basis for MC vasculitis in 

persons with chronic HCV infection.

Results

We identified 356 individuals with cryoglobulin-related vasculitis and chronic hepatitis c 

virus (HCV) infection. A total of 447 controls with chronic HCV infection but with no 

cryoglobulin-related vasculitis were selected from a previously published GWAS of 

spontaneous clearance versus chronic infection of HCV, or were specifically screened for 

this study.28 After quality control measures, 899,641 single nucleotide polymorphisms 

(SNPs) were compared between cases and controls.

The most significant association was located on chromosome 6p21.32 (Figure 1, Table 1). A 

SNP, rs2071286, located within an intronic region of NOTCH4 (P=6.2×10−9) conferred 2.15 

times the odds of having cryoglobulin-related vasculitis within chronically infected patients 

for each risk allele. An additional SNP within NOTCH4 at rs2071279 (P=1.6 ×10−7) had a 

similar effect size with each risk allele (T) resulting in 1.90 times the odds of disease. To 

confirm these findings, replication was attempted for both of these SNPs, however 

rs2071286 did not reach significance (P=0.13) and rs2071279 failed in production. 

Additionally, the next most significant NOTCH4 findings (rs9267820 and rs9267833) also 

did not meet the replication threshold (P>0.01) (Table 2).

The second most significant association was found nearly 400 kilobases away within the 

Major Histocompatibility Complex (MHC) between HLA-DRB1 and HLA–DQA1 at SNP 

rs9461776 (P=1.2×10−7). Each additional copy of the risk allele (G) was associated with 

2.16 times the odds of cryoglobulin-related vasculitis. This SNP was significantly replicated 

in an independent sample of cases and controls (P=0.01). When the discovery and 

replication stages were combined within a meta-analysis, rs9461776 had a p-value of 

7.1×10−9 (OR=2.02, I2=0). Imputation of additional SNPs in both the NOTCH4 and MHC 
regions areas did not yield more significant signals than the actual genotyped SNPs, which 

may reflect the strong linkage disequilibrium (LD) in the region.

The LD structure around the top NOTCH4 association (Figure 2) suggests that there are two 

distinct blocks of LD defining NOTCH4 and the MHC region. However, rs2071286 and 

rs2071279 in NOTCH4 are in strong LD (D’ = 0.98, Figure 2) and both are in LD with the 

HLA class II SNP rs9461776 (D’ = 0.71 and 0.73, respectively) despite low r2 values likely 

due to differences in minor allele frequencies (Figure 2). To determine if the two regions 

might be statistically representing the same underlying association, we performed a 
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conditional analysis. The associations in this region were conditioned on the NOTCH4 SNP, 

rs2071286, and the other associations in this region were attenuated to P<10−4. (Figure 3) 

When the associations were conditioned on the top HLA Class II SNP, rs9461776, the other 

associations in the region were also attenuated to P<10−4. These results do not clarify if the 

underlying causal allele in this region is attributable to NOTCH4 or to the HLA Class II 

alleles.

Discussion

In this investigation we found strong evidence of a host genetic basis for MC vasculitis 

focused in and around the MHC class II and NOTCH4 genes. Although there have been 

reported associations of MC vasculitis with the Class II MHC region the findings have been 

inconsistent. Cacoub and colleagues found an association of the HLA class II allele 

DRB1*11 with HCV-related cryoglobulinemia, although Amoroso and colleagues failed to 

find a significant association with HLA DR or DQ loci.26, 27 In a separate study by De Re 

and colleagues, DR5 and DQ3 alleles were associated with HCV-related cryoglobulinemic 

vasculitis.29 In a study of 25 HCV positive MC vasculitis patients and 407 controls, Lenzi 

and coworkers suggested an HLA-B8-DR3 haplotype associated with susceptibility to MC 

vasculitis, partially confirmed by a Chinese report.23, 24 The complexity of the MHC region, 

the ethnic differences in populations and the smaller sample sizes in the earlier studies may 

also contribute to the differences in association results. In this genome wide association 

study of European individuals we do identify a significant association in the extended HLA 

Class II region that is independent of the recently associated HLA Class II HCV viral 

clearance region.28

However, the nearby NOTCH4 gene also shows association with MC vasculitis in the 

current study. The Notch proteins are a family of transmembrane proteins (Notch 1–4) that 

serve as receptors for a signal transduction pathway. The Notch genes are involved with 

promotion and inhibition of cell differentiation and gene expression in a positive feedback 

loop. Genome-wide associations have shown significant associations of NOTCH4 with 

systemic sclerosis, myeloperoxidase levels, age related macular degeneration, asthma and 

schizophrenia.30, 31 Additionally independently of HLA genes, NOTCH4 polymorphisms 

have been associated with autoimmune disorders.32, 33 The importance of Notch signaling in 

T cell development makes it a viable candidate gene for MC vasculitis. However, the SNPs 

that mark NOTCH4 and MHC class II are too strongly correlated to discriminate the degree 

to which each region contributes to the association, and there is no tractable experimental 

model of MC vasculitis that can be used to dissect the association further.

In summary, based on our GWAS data based on a large sample of MC vasculitis patients 

and controls identified two significant regions with implicated polymorphisms: MHC Class 
II and NOTCH4. However, we do not have evidence to indicate the causal variants for these 

associations. Each of these genes may play a role but further investigation is needed to 

determine the biologic link to this syndrome.
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Materials and Methods

Subjects

The case participants in both the discovery and replication stages were enrolled in 9 

different studies using study-specific case definitions (Supplementary methods and 

Supplementary Table 1). A total of 1,074 individuals were identified from the following 

studies: Toulouse Cohort, BAHSTION (Boston Acute HCV Study: Transmission, Immunity 

and Outcomes Network), Charles, RomeCryo, Mangia, REVELL (Correlates of Resolved 

Versus Low-Level Viremic Hepatitis C Infection in Blood Donors), Cacoub (Paris VIREP-C 

Study), United Kingdom Drug Use cohort and MASVE (Center for Systemic Manifestations 

of Hepatitis Viruses) (see Supplemental Methods). Controls were individuals with chronic 

HCV infection from a previously published GWAS.28 The research was approved by the 

relevant institutional review boards for each study.

Genotyping

In the initial analysis, 3,454 individuals were genotyped on the Illumina Human Omni-Quad 

array at the Center for Inherited Disease Research (CIDR). Samples included both cases and 

controls that were recruited specifically for MC vasculitis (N=497), as well as a previously 

published GWAS for spontaneous HCV resolution versus chronic infection (N=2,957). A 

total of 1,134,514 SNPs were released with genotype and intensity data. Standard quality 

control measures were performed for both the individual and SNP. Individuals were 

excluded if the percentage of missing data was >2% and/or individuals were more related 

than expected (1st degree relatives). Markers were excluded if the percentage of missing 

genotypes was > 5%, the minor allele frequency (MAF) was < 1% or there were strong 

deviations from Hardy-Weinberg equilibrium (p > 10−5). Principal components analysis 

(PCA) was used to determine genetic ancestry using 41,871 autosomal independent SNPs, 

excluding regions known to be associated with ethnicity, such as the extended HLA region 

and the lactase gene. Only individuals that clustered with European ancestry were included 

in further analyses (N=983). Within individuals of European-descent, a gradient was 

apparent from the United Kingdom to Italy, with the French participants clustering in the 

middle (Supplemental Figure1A and 1B). This is consistent with prior studies showing a 

North-South ancestral cline in Europe.34 The association between the principal components 

(PCs) and outcome was statistically significant for only the first two PCs (P<0.05), therefore 

both PCs were included in all genome-wide analyses. The inflation factor (λ) after adjusting 

for the first two PCs and sex was 0.97, suggesting there was no genomic inflation due to 

confounding. The final genome-wide data set included 983 individuals (356 cases and 627 

controls) at 899,641 locations across the genome.

Statistical Analysis

The initial analysis was the discovery phase and included cryoglobulinemia-associated 

vasculitis cases (n=356) and the HCV GWAS controls (n=447) with similar ancestral 

clustering (PCA determined) and chronic HCV infection from 8 different studies (Toulouse 

Cohort, BAHSTION, RomeCryo, Mangia, REVELL, Cacoub (Paris VIREP-C Study), the 

UK Drug Cohort, and MASVE). The controls consisted of individuals with chronic HCV 

infection from the HCV GWAS (N=355), as well as a set of controls recruited specifically 
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for this study (N=92). These latter were consecutively recruited patients with chronic HCV 

infection showing complete absence of features of mixed cryoglobulinemic vasculitis or 

other autoimmune and/or lymphoproliferative disorders (i.e, purpura, arthralgia, asthenia, 

polyneuropathy,nephritis, sicca syndrome, cryoglobulinemia, rheumatoid factor activity, 

complement consumption, autoantibodies, monoclonality) confirmed during at least two 

years of follow-up in two yearly evaluations.

All tests of association were conducted in the statistical software, Plink.35 GWAS was 

performed using logistic regression, under an additive genetic model adjusting for the first 

two PCs and sex. A significance threshold of P <5×10−7 was used to assess genome-wide 

significance.36 The −log10 P-values from each SNP’s logistic regression was plotted to 

generate a Manhattan plot (Figure 1). A conditional analysis was conducted using the top-

associated SNPs (rs2071286, rs9461776) by adding the SNP as a covariate to the logistic 

regression and evaluating the association.

Imputation

SNP Imputation was conducted to increase the density of untyped markers around 

significant and suggestive association signals using the statistical program IMPUTE237 

using a multi-ethnic reference panel from four continents (Africa, North and South America, 

Asia, and Europe) as part of the 1000 Genomes Project.38 The imputed genotypes were 

analyzed using logistic regression under an additive model adjusting for the first two 

principal components and sex. An Expectation-Maximization (EM) algorithm was used to 

incorporate the probabilities of each genotype in the logistic regression.

Replication

To confirm the novel findings from the discovery phase of the GWAS, a replication study 

was performed using convenience samples for the cases and a subset of controls with 

chronic HCV from the previously published GWAS. Controls were selected to be matched 

2:1 with the cases based on their study’s country-of-origin. (Table 1) SNPs were genotyped 

that had reached either genome-wide significance (P<5×10−7) or were SNPs in linkage 

disequilibrium with the genome-wide significant SNPs and had suggestive P-values 

(P<5×10−6). A total of 4 SNPs were analyzed for replication in 92 cases and 179 controls 

from 7 study sites including one new site not represented in the discovery stage (Toulouse 

Cohort, BAHSTION, Charles, RomeCryo, Mangia, Cacoub (Paris VIREP-C Study), and 

MASVE). Using the standard Qiagen spin protocol, DNA for genotyping was extracted 

from stored cells using the QIAamp DNA Blood Mini Kit (Qiagen, Germantown, MD). 

Genotyping for single nucleotide polymorphisms (SNPs) was performed with TaqMan SNP 

genotyping assays (Life Technologies, Carlsbad, CA), which uses unique primers and 

probes sets to target each polymorphism. Taqman’s standard protocol for 5.0ul reactions 

was utilized. The Roche LightCycler 480 Real-Time System (Roche Applied Science, 

Indianapolis, IN) was used to amplify the DNA and measure the fluorescence from each 

reaction to determine the genotype using Roche’s Endpoint Genotyping Software.

Tests of association were conducted in Plink using logistic regression, adjusted for study 

country-of-origin and sex. A conventional P-value threshold was used for replication 
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(P≤0.01). A meta-analysis was conducted between the discovery and replication associations 

using a fixed-effects model in META39, 40 and evaluated for heterogeneity (I2). Linkage 

disequilibrium was estimated in Haploview.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan Plot of GWAS Results. Significance is indicated by the −log transformation of 

the P-value on the y-axis. (e.g. P-value=0.001 denoted as 3) Associations are organized by 

chromosome on the x-axis. Genome-wide significance is indicated by the dashed line 

(P<5×10−7).
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Figure 2. 
Linkage disequilibrium for SNPs with P<10−5 in terms of D’ (red) and r2 (grey). The top 

SNPs’ pairwise linkage disequilibrium measures are highlighted in yellow. Of note is the 

HLA Class II SNP that is in long-range LD with the NOTCH4 SNPs to the left. Genes are 

depicted at the top and the corresponding SNPs are below in the LD plot. Black Triangles 

depict blocks of LD.
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Figure 3. Conditional Associations in NOTCH4 and HLA Class II Region
The original associations are shown in black, with the associations conditioning on the top 

NOTCH4 SNP shown in orange. The associations conditioning on the top HLA Class II 

SNP is shown in blue. Genome-wide significance is indicated with the gray dashed line 

(P=5×10−7). A threshold of 10−4 is shown with the lower dashed line
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