7 research outputs found

    Integrated Recycling of Lignin-Containing Wood Waste

    Get PDF
    The recycling of wood processing waste generated at pulp and paper and woodworking enterprises by reusing it in obtaining a high-yield semi-finished product for the production of paper and cardboard has been studied. The economic and environmental feasibility of wood waste recovery is beyond doubt. The aim has been to develop technology and modes for recycling wood waste from the production of high-yield pulp (birch sawdust) and woodworking (coniferous and the mix of coniferous and deciduous chips). In the course of the study, high-yield pulp has been obtained from birch sawdust using continuous technology (at Perm Pulp and Paper Company) and batch technology (at most pulp and paper industry enterprises). Cooking of wood chips has been carried out only using batch technology. It is shown that the recycling of birch sawdust to produce a fibrous semi-finished product for use in the production of paper and cardboard solves an important economic problem of the pulp and paper industry, which is the need to reduce the consumption of pulpwood and preserve forest resources. The process of recycling wood waste does not require changes to current technology. This produces high-yield pulp, which in terms of quality is not inferior to a similar semi-finished product made from birch technological chips and meets the enterprise standards. It has been revealed that wood chips from coniferous and deciduous wood from woodworking enterprises can also be used as a raw material for the production of high-yield pulp, but only together with sawdust from birch wood. High-yield pulp from the chips of coniferous and the mix of coniferous and deciduous wood is obtained with increased yield, but with low mechanical strength, since the neutral-sulfite method is intended for the production of a fibrous semi-finished product only from deciduous wood; coniferous wood is not boiled using this method. High-yield pulp with quality indicators corresponding to the enterprise standards from technological chips is produced by the ratios of chips and sawdust of 50:50 and 70:30. The yield of the semi-finished product from the raw materials of all used compositions is high – 75…82 %. Tests of high-yield pulp obtained from birch sawdust have shown that the fibrous semi-finished product can replace 20 % of the MS-5B waste paper mass in production in the production of paper and cardboard compositions

    Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope

    Get PDF
    In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system - the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.This work was supported through Australian Research Council (ARC) Discovery Project Grants No. DP120101390, No. DP140101763, and No. DP160102337. S. S. H. is supported by ARC Discovery Early Career Researcher Award No. DE150100315. A. G. T. is supported by ARC Future Fellowship Grant No. FT100100468

    Ghost imaging with atoms and photons for remote sensing

    No full text
    Ghost imaging with correlated photon pairs has been applied to remote sensing without the spatially detected photons interacting with the object: here we demonstrate for the first time ghost imaging using correlated atom pairs.A.G.T. acknowledges the support of the Australian Research Council (ARC) through the Future Fellowship grant FT100100468 and the Discovery grant DP120101390. S.S.H. acknowledges the support of the ARC through the DECRA Fellowship DE150100315. We thank A. T. Friberg for discussions
    corecore