39 research outputs found

    Summary Based Structures with Improved Sublinear Recovery for Compressed Sensing

    Get PDF
    We introduce a new class of measurement matrices for compressed sensing, using low order summaries over binary sequences of a given length. We prove recovery guarantees for three reconstruction algorithms using the proposed measurements, including β„“1\ell_1 minimization and two combinatorial methods. In particular, one of the algorithms recovers kk-sparse vectors of length NN in sublinear time poly(klog⁑N)\text{poly}(k\log{N}), and requires at most Ξ©(klog⁑Nlog⁑log⁑N)\Omega(k\log{N}\log\log{N}) measurements. The empirical oversampling constant of the algorithm is significantly better than existing sublinear recovery algorithms such as Chaining Pursuit and Sudocodes. In particular, for 103≀N≀10810^3\leq N\leq 10^8 and k=100k=100, the oversampling factor is between 3 to 8. We provide preliminary insight into how the proposed constructions, and the fast recovery scheme can be used in a number of practical applications such as market basket analysis, and real time compressed sensing implementation

    CrossWalk: Fairness-enhanced Node Representation Learning

    Get PDF
    The potential for machine learning systems to amplify social inequities and unfairness is receiving increasing popular and academic attention. Much recent work has focused on developing algorithmic tools to assess and mitigate such unfairness. However, there is little work on enhancing fairness in graph algorithms. Here, we develop a simple, effective and general method, CrossWalk, that enhances fairness of various graph algorithms, including influence maximization, link prediction and node classification, applied to node embeddings. CrossWalk is applicable to any random walk based node representation learning algorithm, such as DeepWalk and Node2Vec. The key idea is to bias random walks to cross group boundaries, by upweighting edges which (1) are closer to the groups' peripheries or (2) connect different groups in the network. CrossWalk pulls nodes that are near groups' peripheries towards their neighbors from other groups in the embedding space, while preserving the necessary structural properties of the graph. Extensive experiments show the effectiveness of our algorithm to enhance fairness in various graph algorithms, including influence maximization, link prediction and node classification in synthetic and real networks, with only a very small decrease in performance.Comment: Association for the Advancement of Artificial Intelligence (AAAI) 202

    Sparse Recovery of Positive Signals with Minimal Expansion

    Get PDF
    We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses the adjacency matrices of expander graphs, which often leads to recovery algorithms much more efficient than β„“1\ell_1 minimization. However, to date, constructions based on expanders have required very high expansion coefficients which can potentially make the construction of such graphs difficult and the size of the recoverable sets small. In this paper, we construct sparse measurement matrices for the recovery of non-negative vectors, using perturbations of the adjacency matrix of an expander graph with much smaller expansion coefficient. We present a necessary and sufficient condition for β„“1\ell_1 optimization to successfully recover the unknown vector and obtain expressions for the recovery threshold. For certain classes of measurement matrices, this necessary and sufficient condition is further equivalent to the existence of a "unique" vector in the constraint set, which opens the door to alternative algorithms to β„“1\ell_1 minimization. We further show that the minimal expansion we use is necessary for any graph for which sparse recovery is possible and that therefore our construction is tight. We finally present a novel recovery algorithm that exploits expansion and is much faster than β„“1\ell_1 optimization. Finally, we demonstrate through theoretical bounds, as well as simulation, that our method is robust to noise and approximate sparsity.Comment: 25 pages, submitted for publicatio

    On the recovery of nonnegative sparse vectors from sparse measurements inspired by expanders

    Get PDF
    This paper studies compressed sensing for the recovery of non-negative sparse vectors from a smaller number of measurements than the ambient dimension of the unknown vector. We focus on measurement matrices that are sparse, i.e., have only a constant number of nonzero (and non-negative) entries in each column. For such measurement matrices we give a simple necessary and sufficient condition for l1 optimization to successfully recover the unknown vector. Using a simple ldquoperturbationrdquo to the adjacency matrix of an unbalanced expander, we obtain simple closed form expressions for the threshold relating the ambient dimension n, number of measurements m and sparsity level k, for which l1 optimization is successful with overwhelming probability. Simulation results suggest that the theoretical thresholds are fairly tight and demonstrate that the ldquoperturbationsrdquo significantly improve the performance over a direct use of the adjacency matrix of an expander graph

    Divide-and-conquer: Approaching the capacity of the two-pair bidirectional Gaussian relay network

    Get PDF
    The capacity region of multi-pair bidirectional relay networks, in which a relay node facilitates the communication between multiple pairs of users, is studied. This problem is first examined in the context of the linear shift deterministic channel model. The capacity region of this network when the relay is operating at either full-duplex mode or half-duplex mode for arbitrary number of pairs is characterized. It is shown that the cut-set upper-bound is tight and the capacity region is achieved by a so called divide-and-conquer relaying strategy. The insights gained from the deterministic network are then used for the Gaussian bidirectional relay network. The strategy in the deterministic channel translates to a specific superposition of lattice codes and random Gaussian codes at the source nodes and successive interference cancelation at the receiving nodes for the Gaussian network. The achievable rate of this scheme with two pairs is analyzed and it is shown that for all channel gains it achieves to within 3 bits/sec/Hz per user of the cut-set upper-bound. Hence, the capacity region of the two-pair bidirectional Gaussian relay network to within 3 bits/sec/Hz per user is characterized.Comment: IEEE Trans. on Information Theory, accepte
    corecore