5 research outputs found

    Optimal SVC allocation via symbiotic organisms search for voltage security improvement

    Get PDF
    It is desirable that a power system operation is in a normal operating condition. However, the increase of load demand in a power system has forced the system to operate near to its stability limit whereby an increase in load poses a threat to the power system security. In solving this issue, optimal reactive power support via SVC allocation in a power system has been proposed. In this paper, Symbiotic Organisms Search (SOS) algorithm is implemented to solve for optimal allocation of SVC in the power system. IEEE 26 Bus Reliability Test System is used as the test system. Comparative studies are also conducted concerning Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) techniques based on several case studies. Based on the result, SOS has proven its superiority by producing higher quality solutions compared to PSO and EP. The results of this study can benefit the power system operators in planning for optimal power system operations

    Load Management for Voltage Control Study Using Parallel Immunized-computational Intelligence Technique

    Get PDF
    The increase of power demand is a crucial issue in the power system community in many parts of the world. Malaysia has also witnessed the familiar scenario due to the current development throughout the country has invited the urgency of increase in the power supply. Since Malaysia practices vertical system; where the electricity is supplied by only one utility, load management is an important issue so that the delivery of electricity is implemented without discrimination. Parallel Computational Intelligence will be developed which can alleviate and avoid all the unsolved issues, highlighting the weakness of current schemes. Parallel Computational Intelligence is developed to manage the optimal load in making sure the system maintains the stability condition, within the voltage limits. This paper presents evolutionary programming (EP) technique for optimizing the voltage profile. In this study, 3 algorithms which are Gaussian, Cauchy and Parallel EP were developed to solve optimal load management problem on IEEE 26-bus Reliability Test System (RTS). Results obtained from the study revealed that the application of Parallel EP has significantly reduced the time for the optimization process to complete

    Symbiotic Organisms Search Technique for SVC Installation in Voltage Control

    No full text
     Increasing demand experienced by electric utilities in many parts of the world involving developing country is a normal phenomenon. This can be due to the urbanization process of a system network, which may lead to possible voltage decay at the receiving buses if no proper offline study is conducted. Unplanned load increment can push the system to operate closes to its instability point. Various compensation schemes have been popularly invented and proposed in power system operation and planning. This would require offline studies, prior to real system implementation. This paper presents the implementation of Symbiotic Organisms Search (SOS) algorithm for solving optimal static VAr compensator (SVC) installation problem in power transmission systems. In this study, SOS was employed to perform voltage control study in a transmission system under several scenarios via the SVC installation scheme. This realizes the feasibility of SOS applications in addressing the compensating scheme for the voltage control study. Minimum and maximum bound of the voltage at all buses have been considered as the inequality constraints as one of the aspects. A validation process conducted on IEEE 26-Bus RTS realizes the feasibility of SOS in performing compensation scheme without violating system stability. Results obtained from the optimization process demonstrated that the proposed SOS optimization algorithm has successfully reduced the total voltage deviation index and improve the voltage profile in the test system. Comparative studies have been performed with respect to the established evolutionary programming (EP) and artificial immune system (AIS) algorithms, resulting in good agreement and has demonstrated its superiority. Results from this study could be beneficial to the power system community in the planning and operation departments in terms of giving offline information prior to real system implementation of the corresponding power system utility

    Active and Reactive Power Scheduling Optimization using Firefly Algorithm to Improve Voltage Stability under Load Demand Variation

    No full text
    This paper presents active and reactive power scheduling using firefly algorithm (FA) to improve voltage stability under load demand variation. The study involves the development of firefly optimization engine for power scheduling process involving the active and reactive power for wind generator. The scheduling optimization of wind generator is tested by using IEEE 30-Bus Reliability Test System (RTS). Voltage stability of the system is assessed based in a pre-developed voltage stability indicator termed as fast voltage stability index (FVSI). This study also considers the effects on the loss and voltage profile of the system resulted from the optimization, where the FVSI value at the observed line, minimum voltage of the system and loss were monitored during the load increment. Results obtained from the study are convincing in addressing the scheduling of power in wind generator. Implementation of FA approach to solve power scheduling revealed its flexibility and feasible for solving larger system within different objective functions.This paper presents active and reactive power scheduling using firefly algorithm (FA) to improve voltage stability under load demand variation. The study involves the development of firefly optimization engine for power scheduling process involving the active and reactive power for wind generator. The scheduling optimization of wind generator is tested by using IEEE 30-Bus Reliability Test System (RTS). Voltage stability of the system is assessed based in a pre-developed voltage stability indicator termed as fast voltage stability index (FVSI). This study also considers the effects on the loss and voltage profile of the system resulted from the optimization, where the FVSI value at the observed line, minimum voltage of the system and loss were monitored during the load increment. Results obtained from the study are convincing in addressing the scheduling of power in wind generator. Implementation of FA approach to solve power scheduling revealed its flexibility and feasible for solving larger system within different objective functions

    Optimal TCSC Allocation via Chaotic Immune Symbiotic Organisms Search for Voltage Profile Improvement

    No full text
    As the load demand in a power system increases, power system operators struggle to maintain the power system to be operated within its acceptable limits. If no mitigation actions are taken, a power system may suffer from voltage collapse, which in turn leads to blackout. Flexible AC Transmission System (FACTS) devices can be employed to help improve the voltage profile of the power system. This paper presents the implementation of Chaotic Immune Symbiotic Organism Search (CISOS) optimization technique to solve optimal Thyristor Controlled Series Compensator (TCSC) in a power system for voltage profile improvement. Validation process are conducted on IEEE 26-bus RTS resulting in the capability of CISOS in solving the allocation problem with a better voltage profile. Comparative studies conducted with respect to Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) has revealed the superiority of CISOS over PSO and EP in solving the optimal allocation problem by producing optimal solution with a better voltage profile. The results and information obtained from this study can help power system operator in terms of optimal compensation in power system as well as improving the operation of a power system
    corecore