31 research outputs found

    Poultry Production and Sustainability in Developing Countries under the COVID-19 Crisis: Lessons Learned

    Get PDF
    Poultry farming is a significant source of revenue generation for small farmers in developing countries. It plays a vital role in fulfilling the daily protein requirements of humans through meat and eggs consumption. The recently emerged pandemic Coronavirus Disease-19 (COVID-19) impacts the poultry production sector. Although the whole world is affected, these impacts may be more severe in developing countries due to their dependency on exporting necessary supplies such as feed, vaccines, drugs, and utensils. In this review, we have discussed poultry production in developing countries under the COVID-19 crisis and measures to regain the loss in the poultry industries. Generally, due to the lockdown, trade limitations have negatively impacted poultry industries, which might exacerbate global poverty. Coordinated activities have to be taken at the private and government levels to arrange soft loans so that these farms can restore their production and marketing to normal levels. In addition, here, we have focused on the supply of farm input, feed, other raw materials, management system, improved breeding efficiency, veterinary services, and marketing of egg and meat, which have to be ensured to secure a sustainable poultry production chain

    Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2

    Get PDF
    In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals

    Annona Muricata L. extract restores renal function, oxidative stress, immunohistochemical structure, and gene expression of TNF-α, IL-β1, and CYP2E1 in the kidney of DMBA-intoxicated rats

    Get PDF
    Introduction: 7,12-dimethylbenz (a) anthracene (DMBA) is a harmful polycyclic aromatic hydrocarbon derivative known for its cytotoxic, carcinogenic, and mutagenic effects in mammals and other species. Annona muricata, L. (Graviola; GRV) is a tropical fruit tree traditionally well-documented for its various medicinal benefits. This investigation is the first report on the potential antioxidant and antinfammatory reno-protective impact of GRV against DMBA-induced nephrotoxicity in rats.Methods: Forty male albino rats were allocated into four equal groups (n = 10). The 1st group served as the control, the 2nd group (GRV) was gastro-gavaged with GRV (200 mg/kg b.wt), the 3rd group (DMBA) was treated with a single dose of DMBA (15 mg/kg body weight), and the 4th group (DMBA + GRV) was gastro-gavaged with a single dose of DMBA, followed by GRV (200 mg/kg b.wt). The GRV administration was continued for 8 weeks.Results and Discussion: Results revealed a significant improvement in renal function, represented by a decrease in urea, creatinine, and uric acid (UA) in the DMBA + GRV group. The antioxidant potential of GRV was confirmed in the DMBA + GRV group by a significant decline in malondialdehyde (MDA) and a significant increase in catalase (CAT), superoxide dismutase (SOD), glutathione S transferase (GST), and reduced glutathione (GSH) compared to DMBA-intoxicated rats; however, it was not identical to the control. Additionally, the antiinflammatory role of GRV was suggested by a significant decline in mRNA expression of cytochrome P450, family 2, subfamily e, polypeptide 1 (CYP2E1), tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) in the DMBA + GRV group. Moreover, GRV improved the histopathologic and immunohistochemical expression of TNF-α, CYP450, and IL1β in DMBA-intoxicated kidney tissue. Conclusively, GRV is a natural medicinal product that can alleviate the renal injury resulting from environmental exposure to DMBA. The reno-protective effects of GRV may involve its anti-inflammatory and/or antioxidant properties, which are based on the presence of phytochemical compounds such as acetogenins, alkaloids, and flavonoids

    Bladder cancer: therapeutic challenges and role of 3D cell culture systems in the screening of novel cancer therapeutics

    No full text
    Abstract Bladder cancer (BC) is the sixth most common worldwide urologic malignancy associated with elevated morbidity and mortality rates if not well treated. The muscle-invasive form of BC develops in about 25% of patients. Moreover, according to estimates, 50% of patients with invasive BC experience fatal metastatic relapses. Currently, resistance to drug-based therapy is the major tumble to BC treatment. The three-dimensional (3D) cell cultures are clearly more relevant not only as a novel evolving gadget in drug screening but also as a bearable therapeutic for different diseases. In this review, various subtypes of BC and mechanisms of drug resistance to the commonly used anticancer therapies are discussed. We also summarize the key lineaments of the latest cell-based assays utilizing 3D cell culture systems and their impact on understanding the pathophysiology of BC. Such knowledge could ultimately help to address the most efficient BC treatment

    Osteoblast-activating peptide exhibits a specific distribution pattern in mouse ovary and may regulate ovarian steroids and local calcium levels

    No full text
    Osteoblast-activating peptide (OBAP) is a novel protein affecting osteoblast proliferation and differentiation, but its ovarian expression is yet to be reported. Osteoporosis is a common disease, caused mainly by low estrogen levels in females. We investigated whether OBAP regulates estrogen synthesis and osteoporosis. Using immunohistochemical analyses, we studied the distribution of OBAP in different parts of the mouse ovary. We also attempted to clarify the correlation of OBAP with ovarian steroids and calcium-regulating factors in the same ovarian tissues, including aromatase (CYP19), 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), estrogen receptor (ER), progesterone receptor (PR), receptor activator of nuclear factor-kappa B (RANK), calmodulin, calbindin, and calcium-sensing receptor. The ovarian interstitial endocrine cells (IC) showed the greatest localization of OBAP, followed by the mature corpus luteum and the oocytes of mature Graafian follicles (MGF), while there were strong negative correlations of OBAP with CYP19. Strong positive correlations with 3 beta-HSD (except MGF), RANK (except IC), and calmodulin (except MGF and IC) were demonstrated. OBAP also showed partially positive correlations with ER and PR in the corpus luteum and with IC and calbindin in the MGF. We conclude that OBAP might be related to estrogen synthesis and calcium homeostasis

    Influence of COVID-19 on the poultry production and environment

    Get PDF
    Although chickens are not susceptible to SARS-CoV-2, several coronavirus disease outbreaks have been described concerning poultry processing facilities in different countries. The COVID-19 pandemic and the developed strain caused 2nd, 3rd, and recent Indian strain waves of epidemics that have led to unexpected consequences, such as forced reductions in demands for some industries, transportation systems, employment, and businesses due to public confinement. Besides, poultry processing plants' conditions exacerbate the risks due to the proximity on the line, cold, and humidity. Most workers do not have access to paid sick time or adequate health care, and because of the low wages, they have limited reserves to enable them to leave steady employment. In addition, workers in meat and poultry slaughterhouses may be infected through respiratory droplets in the air and/or from touching dirty surfaces or objects such as workstations, break room tables, or tools. Egg prices have increased dramatically during the lockdown as consumers have started to change their behaviors and habits. The COVID pandemic might also substantially impact the international poultry trade over the next several months. This review will focus on the effect of COVID-19 on poultry production, environmental sustainability, and earth systems from different process points of view

    Effects of Dietary Biological or Chemical-Synthesized Nano-Selenium Supplementation on Growing Rabbits Exposed to Thermal Stress

    No full text
    The adverse influences of elevated ambient temperatures during the summer season on the rabbit industry have received increased global attention. Therefore, this study intended to compare the potential effects of nano-selenium (nano-Se) synthesized by biological (BIO) and chemical (CH) methods on growth performance, carcass variables, serum metabolites, and inflammatory cytokines responses of growing rabbits in the summer season. Two hundred and fifty weaned rabbits (males, 35 days of age) were randomly divided into five treatment groups of 50 rabbits each (each group had five replicates with ten male rabbits). Treatment groups were fed a control diet and four controlled diets supplemented with nano-Se synthesized by biological method (BIO25 and BIO50, with a 25 and 50 mg of nano-Se/kg diet, respectively) and chemical method (CH25 and CH50, with a 25 and 50 mg of nano-Se/kg diet, respectively) for eight weeks. During 11 to 13 weeks of age, a gradual enhancement in live body weight (LBW), feed intake (FI) and feed conversion ratio (FCR) was noticed with BIO25 and BIO50 treatments compared to those in the other groups. The carcass percentage was significantly higher (p < 0.01) for animals fed with BIO25 than the other groups. The other organ functions were significantly higher (p < 0.01) in heat-stressed groups compared to that of nano-Se groups. Increasing the level of only BIO from a 25 to a 50 mg/kg diet gave more improvement in the studied parameters. Additionally, the concentrations of serum urea, triglycerides (TG), and glutamyl transferase (GGT) were lower (p < 0.01) in both treated and untreated groups. Likewise, the supplementation with nano-Se (BIO25, BIO50, or CH25) significantly improved the antioxidant indices and inflammatory cytokines responses as indicated from serum metabolites. Based on the study results, nano-Se especially synthesized by the biological method at diet levels of 25 or 50 mg/kg improved the growth performance, kidney and liver functions, carcass traits, antioxidants indices, and inflammatory cytokines of growing rabbits during thermal stress

    Growth Performance, Physiological Responses, and Histoarchitectural Changes in Juvenile <i>Pangasianodon hypophthalmus</i> under Different Environmental Salinities

    No full text
    Environmental salinity is an important abiotic factor that directly affects the growth, metabolism, osmoregulatory processes, and physiological performance of fish. Herein, the effects of long-term salinity stress on juvenile Pangasianodon hypophthalmus have been evaluated. Fish were allotted in five triplicate groups and exposed to five different salinities (0.0, 4.0, 8.0, 12.0, and 16.0‰) for 56 days. After exposure, the final weight, weight gain percent, and specific growth rate were significantly decreased in groups reared in 8‰, 12‰, and 16‰ salinities. The feed intake was also significantly reduced in groups raised in water salinities of 12‰ and 16‰ compared with other groups. Conversely, the feed conversion ratio values were significantly increased in groups reared in water salinities between 8‰ and 16‰ compared with other groups. The lowest survival rates were observed in groups reared at salinities of 12‰ and 16‰ (91.1% and 77.8%, respectively). Body moisture (%) was significantly decreased, while crude protein and crude lipids (%) were significantly increased in groups exposed to salinities ranging from 8.0‰ to 16.0‰. Stress biomarkers (such as blood glucose, lactate, and cortisol levels) and oxidative stress indicators (such as carbonyl proteins, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)) were significantly increased in groups exposed to different salinities compared with the control group, and their highest levels were in the group exposed to 16‰ salinity. The histoarchitectural changes were different among groups in relation to the salinity level. Moreover, the scored histopathological lesions showed a significant increase in groups exposed to different salinities compared with the control, and the highest scores were reported in groups exposed to the highest salinities (12‰ and 16‰). Based on the fitting curves, the present study suggests that P. hypophthalmus could tolerate salinities up to 8.0‰ with no mortalities; however, 4‰ salinity was more suitable with no adverse effects on the growth and little impact on histology and physiological responses

    Sequential Delivery of Novel Triple Drug Combination via Crosslinked Alginate/Lactoferrin Nanohybrids for Enhanced Breast Cancer Treatment

    No full text
    While breast cancer remains a global health concern, the elaboration of rationally designed drug combinations coupled with advanced biocompatible delivery systems offers new promising treatment venues. Herein, we repurposed rosuvastatin (RST) based on its selective tumor apoptotic effect and combined it with the antimetabolite pemetrexed (PMT) and the tumor-sensitizing polyphenol honokiol (HK). This synergistic three-drug combination was incorporated into protein polysaccharide nanohybrids fabricated by utilizing sodium alginate (ALG) and lactoferrin (LF), inspired by the stealth property of the former and the cancer cell targeting capability of the latter. ALG was conjugated to PMT and then coupled with LF which was conjugated to RST, forming core shell nanohybrids into which HK was physically loaded, followed by cross linking using genipin. The crosslinked HK-loaded PMT&ndash;ALG/LF&ndash;RST nanohybrids exhibited a fair drug loading of 7.86, 5.24 and 6.11% for RST, PMT and HK, respectively. It demonstrated an eight-fold decrease in the IC50 compared to the free drug combination, in addition to showing an enhanced cellular uptake by MCF-7 cells. The in vivo antitumor efficacy in a breast cancer-bearing mouse model confirmed the superiority of the triple cocktail-loaded nanohybrids. Conclusively, our rationally designed triple drug-loaded protein/polysaccharide nanohybrids offer a promising, biocompatible approach for an effective breast tumor suppression
    corecore