64 research outputs found

    Statistical mechanics of confined quantum particles

    Full text link
    We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which may be applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC), condensed matter physics etc. Detailed study of QGP system is carried out and compared with lattice results. Further, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.Comment: 9 pages, 2 figures, articl

    Shape mixing as an approximation to shell model <SUP>24</SUP>Ne

    Get PDF
    Band mixing calculations have been done for 24Ne including the two degenerate prolate and oblate Hartree-Fock states and also some particle-hole excited states in the projection formalism using an interaction obtained by Preedom and Wildenthal. The energy spectrum agrees very well with the experimental results as well as the exact shell model calculations. Thus the band mixing calculations provide a good approximation to the lengthy exact shell-model calcuations. In addition they offer a physical insight into the collective nature of the nucleus as nuclear states are described in terms of only a few 'intrinsic' states

    Rotational Bands and Electromagnetic Transitions of some even-even Neodymium Nuclei in J-Projected Hartree-Fock Model

    Full text link
    Rotational structures of even-even 148−160^{148-160}Nd nuclei are studied with the self-consistent deformed Hartree-Fock (HF) and angular momentum (J) projection model. Spectra of ground band, recently observed K=4−K=4^{-}, K=5−K=5^{-} and a few more excited, positive and negative parity bands have been studied upto high spin values. Apart from these detailed electromagnetic properties (like E2, M1 matrix elements) of all the bands have been obtained. There is substantial agreement between our model calculations and available experimental data. Predictions are made about the band structures and electromagnetic properties of these nuclei. Some 4-qasiparticle K-isomeric bands and their electromagnetic properties are predicted.Comment: 20 page

    Dihyperon in Chiral Colour Dielectric Model

    Full text link
    The mass of dihyperon with spin, parity Jπ=0+J^{\pi}=0^{+} and isospin I=0I = 0 is calculated in the framework of Chiral colour dielectric model. The wave function of the dihyperon is expressed as a product of two colour-singlet baryon clusters. Thus the quark wave functions within the cluster are antisymmetric. Appropriate operators are then used to antisymmetrize inter-cluster quark wave functions. The radial part of the quark wavefunctions are obtained by solving the the quark and dielectric field equations of motion obtained in the Colour dielectric model. The mass of the dihyperon is computed by including the colour magnetic energy as well as the energy due to meson interaction. The recoil correction to the dihyperon mass is incorporated by Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller than the Λ−Λ\Lambda-\Lambda threshold by over 100 MeV. The implications of our results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page

    Quark Hadron Phase Transition and Hybrid Stars

    Get PDF
    We investigate the properties of hybrid stars consisting of quark matter in the core and hadron matter in outer region. The hadronic and quark matter equations of state are calculated by using nonlinear Walecka model and chiral colour dielectric (CCD) model respectively. We find that the phase transition from hadron to quark matter is possible in a narrow range of the parameters of nonlinear Walecka and CCD models. The transition is strong or weak first order depending on the parameters used. The EOS thus obtained, is used to study the properties of hybrid stars. We find that the calculated hybrid star properties are similar to those of pure neutron stars.Comment: 25 pages in LaTex and 9 figures available on request, IP/BBSR/94-3

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Hartree-Fock-Bogoliubov projected spectra for finite nuclei

    No full text
    Explicit expressions convenient for numerical calculations are derived for the number- and total-spin-projected spectrum of a nucleus from its Hartree-Fock-Bogoliubov solution. Suitable approximation to such a spectrum is found. The applications of these results are also carried out
    • …
    corecore