10 research outputs found

    Enhanced cardiac TBC1D10C expression lowers heart rate and enhances exercise capacity and survival

    No full text
    TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity

    KLF15-Wnt–Dependent Cardiac Reprogramming Up-Regulates SHISA3 in the Mammalian Heart

    No full text
    BACKGROUND The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy. OBJECTIVES This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart. METHODS Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells, engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms. RESULTS The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models. CONCLUSIONS The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF. (C) 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    The ability to generate patient-specific induced pluripotent stem cells (iPSCs) provides a unique opportunity for modeling heart disease in vitro. In this study, we generated iPSCs from a patient with dilated cardiomyopathy (DCM) caused by a missense mutation S635A in RNA-binding motif protein 20 (RBM20) and investigated the functionality and cell biology of cardiomyocytes (CMs) derived from patient-specific iPSCs (RBM20-iPSCs). The RBM20-iPSC-CMs showed abnormal distribution of sarcomeric a-actinin and defective calcium handling compared to control-iPSC-CMs, suggesting disorganized myofilament structure and altered calcium machinery in CMs of the RBM20 patient. Engineered heart muscles (EHMs) from RBM20-iPSC-CMs showed that not only active force generation was impaired in RBM20-EHMs but also passive stress of the tissue was decreased, suggesting a higher visco-elasticity of RBM20-EHMs. Furthermore, we observed a reduced titin (TIN) N2B-isoform expression in RBM20-iPSC-CMs by demonstrating a reduction of exon skipping in the PEVK region of TTN and an inhibition of TIN isoform switch. In contrast, in control-iPSC-CMs both TIN isoforms N2B and N2BA were expressed, indicating that the ITN isoform switch occurs already during early cardiogenesis. Using next generation RNA sequencing, we mapped transcriptome and splicing target profiles of RBM20-iPSC-CMs and identified different cardiac gene networks in response to the analyzed RBM20 mutation in cardiac-specific processes. These findings shed the first light on molecular mechanisms of RBM20-dependent pathological cardiac remodeling leading to DCM. Our data demonstrate that iPSC-CMs coupled with EHMs provide a powerful tool for evaluating disease-relevant functional defects and for a deeper mechanistic understanding of alternative splicing-related cardiac diseases

    Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair

    No full text
    Background: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. Methods: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β 1 - and β 2 -adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions
    corecore