4 research outputs found

    Power Quality Improvement of Distributed Generation Integrated Network with Unified Power Quality Conditioner.

    Get PDF
    With the increased penetration of small scale renewable energy sources in the electrical distribution network, maintenance or improvement of power quality has become more critical than ever where the level of voltage and current harmonics or disturbances can vary widely. For this reason, Custom Power Devices (CPDs) such as the Unified Power Quality Conditioner (UPQC) can be the most appropriate solution for enhancing the dynamic performance of the distribution network, where accurate prior knowledge may not be available. Therefore, the main objective of the present research is to investigate the (i) placement (ii) integration (iii) capacity enhancement and (iv) real time control of the Unified Power Quality Conditioner (UPQC) to improve the power quality (PQ) of a distributed generation (DG) network connected to the grid or microgrid

    Integration of UPQC for Power Quality Improvement in Distributed Generation Network – A Review

    Get PDF
    In this paper a technical review of the integration of a Unified Power Quality Conditioner (UPQC) in a distributed generation network is presented. Although the primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation, additional functionalities such as compensation of voltage interruption and active power transfer to the load and grid have also been identified. Connection methodologies with their advantages and disadvantages are also described. Recent improvements in capacity expansion techniques and future trends for the application of UPQC in distributed modes are also identified

    Power Quality in Grid Connected Renewable Energy Systems: Role of Custom Power Devices

    Get PDF
    This paper deals with the technical review of power quality problems associated with the renewable based distributed generation systems and how the custom power devices like STATCOM, DVR and UPQC play important role in power quality improvement. IEEE and IEC standard for the grid connected renewable energy systems are one of the critical point of interest for the selection of custom power devices. Special attention has been given on the compensation of reactive power, harmonic current and voltage fluctuation during the interconnected as well as islanding mode of operation. As the solar and wind are the most abundant resources therefore our point of interest are limited to PV and Wind energy systems only

    Capacity enhancement and flexible operation of unified power quality conditioner in smart and microgrid network

    Get PDF
    This paper presents a new approach to design Unified Power Quality Conditioner (UPQC), termed as distributed UPQC (D-UPQC), for smart or microgrid network where capacity enhancement and flexible operation of UPQC are the important issues. This paper shows the possibility of capacity enhancement and operational flexibility of UPQC through a coordinated control of existing resources. This UPQC consists of a single unit series active power filter (APFse) and multiple shunt APF (APFsh) units in a distributed (parallel) mode. These units can be connected with a common/separate dc linked capacitor(s). The requirement of capacity enhancement arises from the flexibility to cope up with the increased harmonic load demand at low voltage (LV) distribution network. This can be accomplished by a coordinated control where multiple APFsh units are operated by utilizing the capacity of APFse while it is in idle/low mode using. Operational flexibility can be accomplished by compensating (i) the reactive and harmonic current individually or (ii) splitting the combined reactive and harmonic current/power among the APFsh units. Design and control issues have been discussed to identify the capacity enhancement limit with the possibility of operational flexibility. A system then has been simulated in MATLAB to show the effectiveness of D-UPQC in capacity enhancement and flexible operation by applying its existing resource utilization capability
    corecore