26 research outputs found

    Root Canal Anatomy of Maxillary and Mandibular Teeth

    Get PDF
    It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio

    Picosecond laser ablation of dentine in endodontics

    No full text
    The interaction of picosecond laser radiation with human dental tissue was investigated in this study, in order to determine the ablation rates and the surface characteristics of the dentine by using scanning electron microscopy (SEM). Dentine ablation was performed by using tooth sections of different thicknesses (0.5-2.0 mm). Dental tissue samples were irradiated in air with the fundamental wavelength and first harmonic of a regenerative amplifier Nd:YAG laser system, at 1064 nm and 532 nm, respectively, with a pulse duration of 100 ps and a pulse repetition rate of 10 Hz. The results showed very clean craters surrounded by minimum melting of the surface of dentine when the 1064 nm pulses were used. in contrast, when the first harmonic 532 nm pulses were used, the SEM examinations revealed cracks and melting of dentine with irregular surface modification. Consequently, it seems that cleaning and shaping of the foot canal walls during endodontic therapy with the picosecond Nd:YAG laser application may be possible in the future. The, as yet unexplored, field of the picosecond laser interaction with hard dental tissue is expected to be a potential alternative for powerful laser processing of biomedical structures

    Pulsed HF laser ablation of dentin

    No full text
    corecore