17 research outputs found

    A spectroscopy approach to the study of virus infection in the endophytic fungus Epichloë festucae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work we propose a rapid method based on visible and near-infrared (Vis-NIR) spectroscopy to determine the occurrence of double-stranded RNA (dsRNA) viruses in <it>Epichloë festucae </it>strains isolated from <it>Festuca rubra </it>plants. In addition, we examined the incidence of infections by <it>E. festucae </it>in populations of <it>F. rubra </it>collected in natural grasslands of Western Spain.</p> <p>Methods</p> <p>Vis-NIR spectra (400-2498 nm) from 124 virus-infected and virus-free <it>E. festucae </it>isolates were recorded directly from ground and freeze-dried mycelium. To estimate how well the spectra for uninfected and infected fungal samples could be differentiated, we used partial least-squares discriminant analysis (PLS1-DA) and several data pre-treatments to develop calibration models.</p> <p>Results</p> <p>Applying the best regression model, obtained with two sampling years and using standard normal variate (SNV) combined with first derivative transformation to a new validating data set (42 samples), we obtained a correct classification for 75% of the uninfected isolates and up to 86% of the infected isolates.</p> <p>Conclusions</p> <p>The results obtained suggest that Vis-NIR spectroscopy is a promising technology for detection of viral infections in fungal samples when an alternative faster approach is desirable. It provides a tool adequately exact and more time- and cost-saving than the conventional reference analysis.</p

    NIR Spectroscopy Applications in the Development of a Compacted Multiparticulate System for Modified Release

    No full text
    The purpose of this study was to utilize near-infrared spectroscopy and chemical imaging to characterize extrusion-spheronized drug beads, lipid-based placebo beads, and modified release tablets prepared from blends of these beads. The tablet drug load (10.5–19.5 mg) of theophylline (2.25 mg increments) and cimetidine (3 mg increments) could easily be differentiated using univariate analyses. To evaluate other tablet attributes (i.e., compression force, crushing force, content uniformity), multivariate analyses were used. Partial least squares (PLS) models were used for prediction and principal component analysis (PCA) was used for classification. The PLS prediction models (R2 > 0.98) for content uniformity of uncoated compacted theophylline and cimetidine beads produced the most robust models. Content uniformity data for tablets with drug content ranging between 10.5 and 19.5 mg showed standard error of calibration (SEC), standard error of cross-validation, and standard error of prediction (SEP) values as 0.31, 0.43, and 0.37 mg, and 0.47, 0.59, and 0.49 mg, for theophylline and cimetidine, respectively, with SEP/SEC ratios less than 1.3. PCA could detect blend segregation during tableting for preparations using different ratios of uncoated cimetidine beads to placebo beads (20:80, 50:50, and 80:20). Using NIR chemical imaging, the 80:20 formulations showed the most pronounced blend segregation during the tableting process. Furthermore, imaging was capable of quantitating the cimetidine bead content among the different blend ratios. Segregation testing (ASTM D6940-04 method) indicated that blends of coated cimetidine beads and placebo beads (50:50 ratio) also tended to segregate

    QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.)

    Get PDF
    Genetic control of herbage quality variation was assessed through the use of the molecular marker-based reference genetic map of perennial ryegrass (Lolium perenne L.). The restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and genomic DNA-derived simple sequence repeat-based (SSR) framework marker set was enhanced, with RFLP loci corresponding to genes for key enzymes involved in lignin biosynthesis and fructan metabolism. Quality traits such as crude protein (CP) content, estimated in vivo dry matter digestibility (IVVDMD), neutral detergent fibre content (NDF), estimated metabolisable energy (EstME) and water soluble carbohydrate (WSC) content were measured by near infrared reflectance spectroscopy (NIRS) analysis of herbage harvests. Quantitative trait locus (QTL) analysis was performed using single-marker regression, simple interval mapping and composite interval mapping approaches, detecting a total of 42 QTLs from six different sampling experiments varying by developmental stage (anthesis or vegetative growth), location or year. Coincident QTLs were detected on linkage groups (LGs) 3, 5 and 7. The region on LG3 was associated with variation for all measured traits across various experimental datasets. The region on LG7 was associated with variation for all traits except CP, and is located in the vicinity of the lignin biosynthesis gene loci xlpomt1 (caffeic acid-O-methyltransferase), xlpccr1 (cinnamoyl CoA-reductase) and xlpssrcad 2.1 (cinnamyl alcohol dehydrogenase). Comparative genomics analysis of these gene classes with wheat (Triticum aestivum L.) provides evidence for conservation of gene order over evolutionary time and the basis for cross-specific genetic information transfer. The identification of co-location between QTLs and functionally associated genetic markers is critical for the implementation of marker-assisted selection programs and for linkage disequilibrium studies, which will enable future improvement strategies for perennial ryegrass
    corecore