275 research outputs found

    Numerical studies of frontal dynamics

    Get PDF
    Efforts concentrated on the development of a two dimensional primitive equation (PE) model of frontogenesis that simultaneously incorporates the frontagenetical mechanisms of confluence and horizontal shear. Applying this model to study the effects of upper level frontogenesis, it appeared to be dominated by tilting effects associated with cross front variation of vertical motion, in which subsidence is maximized within and to the warm side of the frontal zone. Results suggest that aspects characteristic of three-dimensional baroclinic waves may be abstracted to a significant extent in a two dimensional framework. They also show that upper-level frontogenesis and tropopause folding can occur in the absence of three-dimensional curvature effects, commonly believed to be necessary for realistic upper-level frontogenesis. An implication of the dominant tilting effects is that they may have to be adequately resolved by numerical weather prediction models, thus requiring better horizontal and vertical resolution

    Central European Theatres in Transition

    Get PDF

    Contaminants of emerging concern (cecs) and male reproductive health: Challenging the future with a double-edged sword

    Get PDF
    Approximately 9% of couples are infertile, with half of these cases relating to male factors. While many cases of male infertility are associated with genetic and lifestyle factors, approximately 30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances identified in the environment for the first time or detected at low concentrations during water quality analysis. Since CEC production and use have increased in recent decades, CECs are now ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and parallel reports indicate that semen quality is continuously declining, supporting the notion that CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as well as the use of spermatozoa in toxicological studies

    Simvastatin inhibits interferon-γ-induced MHC class II up-regulation in cultured astrocytes

    Get PDF
    Based on their potent anti-inflammatory properties and a preliminary clinical trial, statins (HMG-CoA reductase inhibitors) are being studied as possible candidates for multiple sclerosis (MS) therapy. The pathogenesis of MS is unclear. One theory suggests that the development of autoimmune lesions in the central nervous system may be due to a failure of endogenous inhibitory control of MHC class II expression on astrocytes, allowing these cells to adapt an interferon (IFN)-γ-induced antigen presenting phenotype. By using immunocytochemistry in cultured astrocytes derived from newborn Wistar rats we found that simvastatin at nanomolar concentrations inhibited, in a dose-response fashion, up to 70% of IFN-γ-induced MHC class II expression. This effect was reversed by the HMG-CoA reductase product mevalonate. Suppression of the antigen presenting function of astrocytes might contribute to the beneficial effects of statins in MS

    Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy.

    Get PDF
    Optical and magnetic tweezers are widely employed to probe the mechanics and activity of individual biomolecular complexes. They rely on micrometre-sized particles to detect molecular conformational changes from the particle position. Real-time particle tracking with Ångström accuracy has so far been only achieved using laser detection through photodiodes. Here we demonstrate that camera-based imaging can provide a similar performance for all three dimensions. Particle imaging at kHz rates is combined, with real-time data processing being accelerated by a graphics-processing unit. For particles that are fixed in the sample cell we can detect 3-Å-sized steps that are introduced by cell translations at rates of 10 Hz, while for DNA-tethered particles 5 Å steps at 1 Hz can be resolved. Moreover, 20 particles can be tracked in parallel with comparable accuracy. Our approach provides a simple and robust way for high-resolution tweezer experiments using multiple particles at a time

    DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.

    Get PDF
    Plasmonic sensors are extremely promising candidates for label-free single-molecule analysis but require exquisite control over the physical arrangement of metallic nanostructures. Here we employ self-assembly based on the DNA origami technique for accurate positioning of individual gold nanoparticles. Our innovative design leads to strong plasmonic coupling between two 40 nm gold nanoparticles reproducibly held with gaps of 3.3 ± 1 nm. This is confirmed through far field scattering measurements on individual dimers which reveal a significant red shift in the plasmonic resonance peaks, consistent with the high dielectric environment due to the surrounding DNA. We use surface-enhanced Raman scattering (SERS) to demonstrate local field enhancements of several orders of magnitude through detection of a small number of dye molecules as well as short single-stranded DNA oligonucleotides. This demonstrates that DNA origami is a powerful tool for the high-yield creation of SERS-active nanoparticle assemblies with reliable sub-5 nm gap sizes

    Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Get PDF
    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions

    Specimen Preparation, Imaging, and Analysis Protocols for Knife-edge Scanning Microscopy

    Get PDF
    Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM)7, 5, 9, developed and hosted in the authors' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi)1, 4, 8, vascular networks (India ink)1, 4, and cell body distribution (Nissl)3. The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain6, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research10; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth

    Student and Faculty Perceptions of Attendance Policies at a Polytechnic University

    Get PDF
    Student and Faculty Perceptions of Attendance Policies at a Polytechnic University The goal of an attendance policy is to improve the academic success of students. However,current literature does not provide clear conclusions whether enforcing an attendance policy actually improves student performance. This study explores student and faculty perceptions regarding the utility of attendance policies in undergraduate courses at a polytechnic university.Anonymous surveys were completed by 89 faculty members and 455 responses from five schools (Engineering, Engineering Technology and Management, Computer and Software Engineering, Architecture, and Arts and Sciences) on a single campus. Comparisons between theperceptions of students and faculty members are presented, as are comparisons between theperceptions of lower-level and upper-level students. Variations in perceptions based on major arealso highlighted. Finally, trends in perceptions regarding attendance policies in lower-level versus upper-level undergraduate courses are revealed.Students, regardless of major, class standing, or course level, reported attending more classes in courses that had attendance policies. The most significant impact of an attendance policy on class attendance was observed at the freshman level. While 84% of freshmen reported attending at least 90% of the classes in a course with an attendance policy, only 67% reported attending at that rate in a course without one. Qualitative data containing student and faculty attitudes towards attendance policies are also analyzed and discussed.Even though class attendance appeared to have improved as a result of attendance policies,students’ perceptions about these policies varied significantly. Overall, the majority of students(51%) believed that, for a course with an attendance policy, the policy positively affected final grades. For a course without an attendance policy, the majority (57%) felt that the lack of a policy had no impact of final grades. Faculty members’ perceptions about attendance policy likewise varied. Overall, 61% of the faculty members surveyed reported having an attendance policy in one or more of their courses. The majority of faculty members believed that an attendance policy led to improvements in students’ grades in lower-level courses, but not inupper-level courses. Collectively, this study can help instructors make better informed decisions about the use of attendance policies in their courses
    corecore