18 research outputs found

    WATER VAPOR PERMEABILITY OF LEATHERS BY GREY SYSTEM THEORY

    No full text
    373 Water vapor permeability of leathers by grey system theory q ) ( * 7 V h S U W V I f g V k 9W f W d 9a % B f V % Rev. Adv. Mater. Sci. 33 (2013) Abstract. In this paper, Grey System Theory (GST) is used to study the water vapor permeability of leathers. Grey relation analysis was employed to analyze the main affecting factors, and the contributions of each factor to the water vapor permeability of leathers were investigated and compared. The relation equations between time and the water vapor permeability of leathers were obtained by computer calculation. The results indicated that Grey System Theory can be used to investigate and calculate the water vapor permeability of leathers, and the technique is effective and convenient

    Effect of Cyclic Stress on the Structure and Mechanical Properties of Leather

    No full text
    WOS: 000567809500001Leathers are collagen-based biomaterials with very good viscoelasticity. in leather making, leather has to endure many different kinds of forces, especially cyclic stress. the response of leather to these stresses not only determines the properties of the leather, but also affects the mechanical behaviours of leather. Cycle stress is very common during the post-tanning process and use of leather. in this paper, two types of cyclic stretching were employed to study the mechanical response of leather to cyclic stress. the general patterns of different energy changes were studied. Both large hysteresis loop and residual strain were found for the leather after the first cycle of cyclic stretching. Loading energy, hysteresis and peak stress decrease with increasing the stretching cycles, while the unloading energy nearly keeps stable. 'Rest' has an important effect on the recovery of residual strain of leather. Cyclic stretching improves the softness of leather by unfolding the sticky collagen fibres. There is a linear relationship between the loading energy and the hysteresis of the leather, regardless of the stretching modes.National Natural Science Foundation Commission [51673177]; National Key RD Program [2017YFB0308500]This project is financially supported by the National Natural Science Foundation Commission (Grant No. 51673177) are greatly appreciated and the National Key R&D Program of (Grant No. 2017YFB0308500)

    Comparison on the thermal degradation kinetics and mechanism of hides before and after formaldehyde-tanning

    No full text
    Content: The thermal degradation kinetics of hides before and after being tanned with formaldehyde were investigated using thermalgravimetric analysis (TGA) at four different heating rates of 5, 10, 20, 30 K/min. Such model-free methods as Flynn-Wall-Ozawa and Friedman as well as model-fitting method of Criado were employed to determine the thermal degradation active energy and degradation mechanism. Based on the Flynn-Wall-Ozawa and Friedman methods, the average active energy (Ea) of formaldehyde-tanned leather was 223.1 kJ/mol and 230.7 kJ/mol respectively. Results from general master curves showed diffusion processes in the thermal degradation of formaldehyde-tanned leather. Neither the thermal degradation activation energy nor the degradation mechanism is affected by the formaldehyde tanning. Nevertheless, the results by thermalgravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR) indicated difference in the relative amounts of evolved products. According to the 3D-FTIR analysis, the dominant components of evolved gas for both untanned and tanned hides are CO2, CH4, H2O, NH3 along with small amount of HNCO. However, after formaldehyde tanning, both the evolved NH3 by the decomposition of free –NH2 groups and peptide –NH– groups from different amino acids in collagen and CH4 by the cleavage of -CH3 and -CH2- increase. Take-Away: 1. The theraml degradtion mechanism of hides before and after formaldehyde-tanning is eatablished in our paper. 2. The main degradation pathway of hides before and after formaldehyde-tanning is discussed with the help of TG-FTIR analysis

    Comparison on the thermal degradation kinetics and mechanism of hides before and after formaldehyde-tanning

    No full text
    Content: The thermal degradation kinetics of hides before and after being tanned with formaldehyde were investigated using thermalgravimetric analysis (TGA) at four different heating rates of 5, 10, 20, 30 K/min. Such model-free methods as Flynn-Wall-Ozawa and Friedman as well as model-fitting method of Criado were employed to determine the thermal degradation active energy and degradation mechanism. Based on the Flynn-Wall-Ozawa and Friedman methods, the average active energy (Ea) of formaldehyde-tanned leather was 223.1 kJ/mol and 230.7 kJ/mol respectively. Results from general master curves showed diffusion processes in the thermal degradation of formaldehyde-tanned leather. Neither the thermal degradation activation energy nor the degradation mechanism is affected by the formaldehyde tanning. Nevertheless, the results by thermalgravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR) indicated difference in the relative amounts of evolved products. According to the 3D-FTIR analysis, the dominant components of evolved gas for both untanned and tanned hides are CO2, CH4, H2O, NH3 along with small amount of HNCO. However, after formaldehyde tanning, both the evolved NH3 by the decomposition of free –NH2 groups and peptide –NH– groups from different amino acids in collagen and CH4 by the cleavage of -CH3 and -CH2- increase. Take-Away: 1. The theraml degradtion mechanism of hides before and after formaldehyde-tanning is eatablished in our paper. 2. The main degradation pathway of hides before and after formaldehyde-tanning is discussed with the help of TG-FTIR analysis

    Comparison on the thermal degradation kinetics and mechanism of hides before and after formaldehyde-tanning

    No full text
    Content: The thermal degradation kinetics of hides before and after being tanned with formaldehyde were investigated using thermalgravimetric analysis (TGA) at four different heating rates of 5, 10, 20, 30 K/min. Such model-free methods as Flynn-Wall-Ozawa and Friedman as well as model-fitting method of Criado were employed to determine the thermal degradation active energy and degradation mechanism. Based on the Flynn-Wall-Ozawa and Friedman methods, the average active energy (Ea) of formaldehyde-tanned leather was 223.1 kJ/mol and 230.7 kJ/mol respectively. Results from general master curves showed diffusion processes in the thermal degradation of formaldehyde-tanned leather. Neither the thermal degradation activation energy nor the degradation mechanism is affected by the formaldehyde tanning. Nevertheless, the results by thermalgravimetric analyzer coupled with Fourier transform infrared spectrometry (TG-FTIR) indicated difference in the relative amounts of evolved products. According to the 3D-FTIR analysis, the dominant components of evolved gas for both untanned and tanned hides are CO2, CH4, H2O, NH3 along with small amount of HNCO. However, after formaldehyde tanning, both the evolved NH3 by the decomposition of free –NH2 groups and peptide –NH– groups from different amino acids in collagen and CH4 by the cleavage of -CH3 and -CH2- increase. Take-Away: 1. The theraml degradtion mechanism of hides before and after formaldehyde-tanning is eatablished in our paper. 2. The main degradation pathway of hides before and after formaldehyde-tanning is discussed with the help of TG-FTIR analysis

    Inhibitory Effect of Methotrexate on Rheumatoid Arthritis Inflammation and Comprehensive Metabolomics Analysis Using Ultra-Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (UPLC-Q/TOF-MS)

    No full text
    Rheumatoid arthritis (RA) is a common autoimmune disease. The inflammation in joint tissue and system endanger the human health seriously. Methotrexate have exhibited a satisfactory therapeutic effect in clinical practice. The aim of this research was to establish the pharmacological mechanism of methotrexate on RA therapy. Collagen induced arthritic rats were used to identify how methotrexate alleviates inflammation in vivo. Lipopolysaccharide-induced inflammatory proliferation in macrophages was also be detected in vitro. The activation level of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nucleotide binding domain and leucine-rich repeat pyrin 3 domain (NLRP3)/Caspase-1 and related cytokines were examined by real-time PCR and western blotting or quantified with the enzyme-linked immunosorbent assay. Comprehensive metabolomics analysis was performed to identify the alteration of metabolites. Results showed that treating with methotrexate could alleviate the inflammatory condition, downregulate the activation of NF-κB and NLRP3/Caspase-1 inflammatory pathways and reduce the level of related cytokines. Docking interaction between methotrexate and caspase-1 was visualized as six H-bonds indicating a potential inhibitory effect. Metabolomics analysis reported three perturbed metabolic inflammation related pathways including arachidonic acid, linoleic acid and sphingolipid metabolism. These findings indicated that methotrexate could inhibit the onset of inflammation in joint tissue by suppressing the activation of NF-κB and NLRP3/Caspase-1 pathways and regulating the inflammation related metabolic networks

    Ore Genesis of the Kuergasheng Pb–Zn Deposit, Xinjiang Province, Northwest China: Constraints from Geology, Fluid Inclusions, and H–O–C–S–Pb Isotopes

    No full text
    The Kuergasheng Pb–Zn deposit is located in the Western Tianshan Orogen, Xinjiang Province, China. The ore bodies are mainly hosted in sandstone of the Tuosikuertawu Formation and are controlled by NW-trending faults. Three paragenetic stages were identified: early pyrite–chalcopyrite–quartz veins (stage 1), middle galena–sphalerite–quartz veins (stage 2), and late sulfide-poor calcite–quartz veins (stage 3). Fluid inclusions (FIs) include liquid-rich aqueous (LV-type), vapor-rich aqueous (VL-type), halite-bearing (S-type), and monophase liquid aqueous (L-type). Homogenization temperatures for FIs from stages 1–3 are 221–251, 173–220, and 145–172 °C, respectively. Stage 1 fluids in LV-, VL-, and S-type FIs yield salinities of 6.2–9.6, 1.7–3.1, and 32.7–34.9 wt % NaCl equiv., respectively. Stage 2 fluids in LV- and S-type FIs have salinities of 5.1–7.9 and 31.9–32.1 wt % NaCl equiv., respectively. Stage 3 fluids in LV- and L-type FIs have salinities of 3.4–5.9 wt % NaCl equiv. Oxygen, hydrogen, and carbon isotopic data (δ18OH2O = −7.7 to 1.7‰, δDH2O = −99.2 to −83.1‰, δ13CH2O = −16.6 to 9.1‰) indicate that the ore-forming fluids have a hybrid origin —an initial magmatic source with input of meteoric water becoming dominant in the later stage. Sulfur and lead isotopic data for galena (δ34S = 5.6 to 6.9‰, 206Pb/204Pb = 18.002–18.273, 207Pb/204Pb = 15.598–15.643, 208Pb/204Pb = 38.097–38.209) reveal that the ore-forming materials were mainly derived from the Beidabate intrusive body and the Tuosikuertawu Formation

    Anti-Inflammatory Effect of Columbianetin on Lipopolysaccharide-Stimulated Human Peripheral Blood Mononuclear Cells

    No full text
    Dysregulated inflammation is increasingly considered as the main cause of many diseases on which NOD1/NF-κB pathway plays an important role. Columbianetin (CBT) is derived from the root of the Chinese herb Radix Angelicae Pubescentis for treating inflammatory diseases. Although the anti-inflammatory effect of CBT has been reported, its anti-inflammatory mechanism was poorly studied. In this study, we explored the anti-inflammatory pathway of CBT in lipopolysaccharide- (LPS-) stimulated human peripheral blood mononuclear cell (PBMC) model. Inflammatory cytokine production in culture supernatant was assessed using ELISA assay, and the possible anti-inflammatory pathway of CBT was screened using qPCR array and enrichment analysis with DAVID6.8. To further confirm the targeted pathway of CBT, we pretreated PBMC with the selective NOD1 inhibitor ML130 and then measured the protein levels of the pathway by Western blotting. The result showed that CBT effectively suppressed the expressions of TNF-α, IL-6, MCP-1, and IL-1β in a dose-dependent manner and significantly downregulated 19 out of 32 differentially expressed genes, most of which were involved in the NOD1/NF-κB pathway, and also showed that CBT remarkably inhibited LPS-induced NOD1, RIP2, and NF-κB activation. Furthermore, the inhibitory effects of CBT on NOD1/NF-κB pathways were blocked by ML130. These findings indicated that CBT inhibits the production of inflammatory cytokines induced by LPS involved in the downregulation of NOD1/NF-κB pathways
    corecore