2,429 research outputs found
Instantaneous Normal Mode analysis of liquid HF
We present an Instantaneous Normal Modes analysis of liquid HF aimed to
clarify the origin of peculiar dynamical properties which are supposed to stem
from the arrangement of molecules in linear hydrogen-bonded network. The
present study shows that this approach is an unique tool for the understanding
of the spectral features revealed in the analysis of both single molecule and
collective quantities. For the system under investigation we demonstrate the
relevance of hydrogen-bonding ``stretching'' and fast librational motion in the
interpretation of these features.Comment: REVTeX, 7 pages, 5 eps figures included. Minor changes in the text
and in a figure. Accepted for publication in Phys. Rev. Let
Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model
It is shown that the fraction f of imaginary frequency instantaneous normal
modes (INM) may be defined and calculated in a random energy model(REM) of
liquids. The configurational entropy S and the averaged hopping rate among the
states R are also obtained and related to f, with the results R~f and
S=a+b*ln(f). The proportionality between R and f is the basis of existing INM
theories of diffusion, so the REM further confirms their validity. A link to S
opens new avenues for introducing INM into dynamical theories. Liquid 'states'
are usually defined by assigning a configuration to the minimum to which it
will drain, but the REM naturally treats saddle-barriers on the same footing as
minima, which may be a better mapping of the continuum of configurations to
discrete states. Requirements of a detailed REM description of liquids are
discussed
Early-Stage Thinning for the Restoration of Young Redwood--Douglas-Fir Forests in Northern Coastal California, USA
Among forested parks and reserves of the Pacific Coast of the United States, the restoration of late-successional conditions to second-growth stands is a management priority. Some traditional silvicultural treatments may help achieve this objective. We evaluated early-stage thinning as a restoration treatment to facilitate the growth and development of young (33- to 45-year old), homogeneous, and second-growth stands of coast redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii). Targeting both stand-level responses and dominant (focal) tree responses for analysis, we compared structural attributes of adjacent thinned and unthinned stands, 12–17 years after thinning. Thinned stands displayed enhanced metrics of tree vigor, growth, and mechanical stability, thereby improving response to future restoration treatments and broadening the range of potential stand conditions. We conclude that early-stage thinning has been successful as a preliminary restoration treatment because it accomplished many initial goals of forest restoration, while retaining sufficient tree numbers to buffer against possible attrition from future disturbances
Potential energy landscape-based extended van der Waals equation
The inherent structures ({\it IS}) are the local minima of the potential
energy surface or landscape, , of an {\it N} atom system.
Stillinger has given an exact {\it IS} formulation of thermodynamics. Here the
implications for the equation of state are investigated. It is shown that the
van der Waals ({\it vdW}) equation, with density-dependent and
coefficients, holds on the high-temperature plateau of the averaged {\it IS}
energy. However, an additional ``landscape'' contribution to the pressure is
found at lower . The resulting extended {\it vdW} equation, unlike the
original, is capable of yielding a water-like density anomaly, flat isotherms
in the coexistence region {\it vs} {\it vdW} loops, and several other desirable
features. The plateau energy, the width of the distribution of {\it IS}, and
the ``top of the landscape'' temperature are simulated over a broad reduced
density range, , in the Lennard-Jones fluid. Fits to the
data yield an explicit equation of state, which is argued to be useful at high
density; it nevertheless reproduces the known values of and at the
critical point
Instantaneous Normal Mode Analysis of Supercooled Water
We use the instantaneous normal mode approach to provide a description of the
local curvature of the potential energy surface of a model for water. We focus
on the region of the phase diagram in which the dynamics may be described by
the mode-coupling theory. We find, surprisingly, that the diffusion constant
depends mainly on the fraction of directions in configuration space connecting
different local minima, supporting the conjecture that the dynamics are
controlled by the geometric properties of configuration space. Furthermore, we
find an unexpected relation between the number of basins accessed in
equilibrium and the connectivity between them.Comment: 5 pages, 4 figure
Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility
A quality assurance and performance qualification laboratory was built at
McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC)
muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer
upgrade. The facility uses cosmic rays as a muon source to ionise the quenching
gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A
gas system was developed and characterised for this purpose, with a simple and
efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC).
The gas system was tested to provide the desired 45 vol% pentane concentration.
For continuous operations, a state-machine system was implemented with alerting
and remote monitoring features to run all cosmic-ray data-acquisition
associated slow-control systems, such as high/low voltage, gas system and
environmental monitoring, in a safe and continuous mode, even in the absence of
an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal
of Instrumentation (JINST), including corrected Fig. 8b
Saddles in the energy landscape probed by supercooled liquids
We numerically investigate the supercooled dynamics of two simple model
liquids exploiting the partition of the multi-dimension configuration space in
basins of attraction of the stationary points (inherent saddles) of the
potential energy surface. We find that the inherent saddles order and potential
energy are well defined functions of the temperature T. Moreover, decreasing T,
the saddle order vanishes at the same temperature (T_MCT) where the inverse
diffusivity appears to diverge as a power law. This allows a topological
interpretation of T_MCT: it marks the transition from a dynamics between basins
of saddles (T>T_MCT) to a dynamics between basins of minima (T<T_MCT).Comment: 4 pages, 3 figures, to be published on PR
Analytic computation of the Instantaneous Normal Modes spectrum in low density liquids
We analytically compute the spectrum of the Hessian of the Hamiltonian for a
system of N particles interacting via a purely repulsive potential in one
dimension. Our approach is valid in the low density regime, where we compute
the exact spectrum also in the localized sector. We finally perform a numerical
analysis of the localization properties of the eigenfunctions.Comment: 4 RevTeX pages, 4 EPS figures. Revised version to appear on Phys.
Rev. Let
- …