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Among forested parks and reserves of the Pacific Coast of the United States, the restoration of late-successional conditions to
second-growth stands is a management priority. Some traditional silvicultural treatments may help achieve this objective. We
evaluated early-stage thinning as a restoration treatment to facilitate the growth and development of young (33- to 45-year
old), homogeneous, and second-growth stands of coast redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii).
Targeting both stand-level responses and dominant (focal) tree responses for analysis, we compared structural attributes of
adjacent thinned and unthinned stands, 12–17 years after thinning. Thinned stands displayed enhanced metrics of tree vigor,
growth, and mechanical stability, thereby improving response to future restoration treatments and broadening the range of
potential stand conditions. We conclude that early-stage thinning has been successful as a preliminary restoration treatment
because it accomplished many initial goals of forest restoration, while retaining sufficient tree numbers to buffer against possible
attrition from future disturbances.

1. Introduction

Throughout the range of coast redwood (Sequoia sempervi-
rens), facilitating the acquisition of late-successional forest
structures and compositions in second-growth forests has
become a primary management objective. It is estimated that
less than 10 percent of original old-growth redwood forests
remain [1], the majority of which have been conserved in
parks and reserves. In order to continue promoting the extent
of late-successional habitat on a landscape scale, focus has
switched to the area’s second-growth forests [2]. In many cas-
es, ecological restoration of these former commercial timber-
lands may require some forms of silvicultural treatment [3].

In young stands acquired for such conservation purposes,
early-stage thinning has been proposed as a potential rest-
oration treatment. Some stand responses to early-stage thin-
ning have been documented in pure stands of coast redwood
[4–6] and pure stands of Douglas-fir (Pseudotsuga menziesii)

[7–9]. However, analysis of early-stage thinning’s effects on
the region’s more ubiquitous mixed redwood—Douglas-fir
stands is lacking. Similar to O’Hara et al. [10], we use the
term “early-stage thinning” to describe a forest restoration
technique whose primary purpose is shifting composition
imbalances and reducing stand densities in order to accel-
erate growth in young second-growth stands, with the
ultimate long-term objective of acquiring old-growth forest
characteristics. This distinguishes early-stage thinning from
similar treatments applied to commercial timber production
(precommercial thinning), and from other thinning treat-
ments that are often applied to older stands in later stages
of structural development.

An excellent example of former redwood timberland now
managed with restoration goals is the California Depart-
ment of Parks and Recreation’s Mill Creek Property in
northern coastal California (Figure 1). Acquired in 2002,
the management directive of this park unit (an addition to
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Figure 1: Mill Creek Property (study site) in northern California, USA.

Del Norte Coast Redwoods State Park) is to “restore late-
successional forest conditions and the associated natural
functions for the benefit of the areas’ fish and wildlife” [2].
The Mill Creek Property contains 10,120 ha of forestlands,
the majority of which is comprised of young (33 to 45
years old), even-aged mixed stands of coast redwood and
Douglas-fir, which were established following clearcutting of
the original redwood-dominated forest. Consistent with its
planned use as commercial timberland, the previous owner
had performed early-stage (or precommercial) thinning on
approximately 1,012 ha. The thinning was performed in
stands 9 to 34-year old at approximately 4.25 m spacing, with
no particular species preference.

This study was conducted to (a) determine the existing
condition of young coast redwood—Douglas-fir stands at
the Mill Creek Property and (b) document the effects of
early-stage thinning on tree and stand structural attributes
of special concern to forest restoration. We hypothesized that
thinning would enhance metrics of tree size, vigor, growth,
stability, and branch diameter. Most restoration activities in
the redwood region have focused on older stands, but studies
elsewhere in the Pacific Northwest forests have demonstrated
that early-stage thinning enhances tree growth and vigor,
expediting the growth of large trees, height differentiation,
and development of late-successional forest structure [3, 11].
Early-stage thinning has also been demonstrated to improve
tree resistance to wind and snow damage [9, 12, 13].

For this analysis we employed a novel assessment focused
on trees occupying upper canopy positions (analogous to

crop trees in timber management), hereafter referred to as
“focal trees.” Focal trees were targeted because, in dense
young stands managed with long-term goals (as the Mill
Creek Property), only a subset of dominant upper canopy
trees are of primary interest. Old-growth redwood forests
canopies typically consist of 50–100 tree ha−1. In second-
growth stands, most trees of subordinate canopy positions
will not survive the stem exclusion phase [14] and are
essentially ephemeral. Traditional analyses of stand averages
underestimate upper canopy tree responses because trees of
subordinate canopy positions are included [15]. In response
to this concern, previous studies avoided the influence of
suppressed trees on stand averages by constraining evalua-
tions to the largest 100 to 250 trees ha−1 (e.g., [7, 9, 12, 15]).
We used a similar method, refining the selection of focal trees
based on canopy position.

2. Methods

2.1. Study Area. The Mill Creek Property is located in the
Coast Range of northwestern California, USA, 10 km south-
east of Crescent City (41.7363◦N, 124.0914◦W) and 5 km
from the coast. The climate is dominated by Mediterranean
and maritime influences; temperatures are moderated and
rarely drop below freezing, averaging 4.2◦ to 19.8◦C, and
precipitation occurs mostly during winter as rain, annually
averaging 180 cm [16]. Fog is common year round.

The topography of the Mill Creek Property consists of
steep river-cut canyons. Soils in sample sites are dominated
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by gravelly clay loam Ultisols of the Coppercreek, Tectah,
Lackscreek, and Slidecreek Series [17]. Elevation of sample
sites range from 150 m to 410 m a.s.l. Site productivity is class
I for Douglas-fir (43–50 m at 50 years; [18]), and class I and
II for redwood (36–50 m at 50 years; [19]).

At the time of this study, vegetation of the Mill Creek
Property was dominated by mixed coast redwood—Douglas-
fir stands, with minor components of Alnus rubra (red
alder), Lithocarpus densiflorus (tanoak), Picea sitchensis (Sitka
spruce), Abies grandis (grand fir), Tsuga heterophylla (western
hemlock), Thuja plicata (western redcedar), Chamaecyparis
lawsoniana (Port-Orford-cedar), and Acer macrophyllum
(bigleaf maple). The most common understory and shrub
species were Vaccinium ovatum (evergreen huckleberry),
Gaultheria shallon (salal), Rhododendron macrophyllum
(Pacific rhododendron), Ceanothus thyrsiflorus (blueblos-
som), and Polystichum munitum (sword fern).

In order to quantify thinning effect, we required adjacent
stands of identical condition except treatment history (thin-
ning). Five even-aged coast redwood—Douglas-fir areas
in the Mill Creek Property were identified that met the
criteria, each including a thinned stand and an adjacent,
paired unthinned stand. In intensively managed commercial
timberlands where precommercial thinning is a standard
treatment, finding thinned/unthinned pairs is a challenge;
this proved to be true at Mill Creek as well and limited the
study’s sample size to the five pairs. A number of criteria
were enforced to ensure that stand pairs were comparable. To
minimize variation in microclimate, stand pairs were located
less than 100 m apart. To ensure stand pairs developed under
the same weather conditions, stand pairs did not differ in age
more than 3 years. In order to isolate redwood—Douglas-fir
dynamics, study sites were selected in areas where other tree
species were not present. Four of the stand pairs ranged in
age from 33 to 37 years (originated from 1970 to 1974); the
fifth pair was 45 years old (originated 1962). Thinned areas
had been treated 12 to 17 years prior to the study.

To isolate treatment effects, measurement plots were
located in at the center of the most visually representative
portion of each stand, which best typified the surrounding
stand structure (stem density, species composition, and age)
and microsite (apparently homogeneous soil, site quality,
aspect, slope, hydrology, and buffered from roads and
thinned areas). Sprouts and seedlings were both included in
the sample when sprout clump density was not uncharac-
teristic of the surrounding stand; however, dense redwood
sprout clumps were not included in the sample, in order
to eliminate spatial effects. The lower stem density of
thinned stands required a larger fixed-radius circular plot
to capture approximately the same number of trees (sensu
[20]); therefore, thinned plots were 400 m2 (0.04 ha), and
unthinned plots were 250 m2 (0.025 ha).

To quantify tree-level responses among the most com-
petitive individuals, we also analyzed a subset of the largest
trees in each stand (focal trees) within a 0.2 ha circular plot
centered on the sample plot centers. The ten most dominant
trees from the upper canopy—five each of Douglas-fir and
redwood—were selected. In order to isolate thinning effect,
selection preference was given to trees free of bole defects

and excessively large branches (indicating the influence of
adjacent persistent gaps on growth). Analyzing this focal tree
subset enabled us to avoid the influence of suppressed trees
on stand averages, a strategy consistent with previous studies
that focused on crop tree development (e.g., [7, 12, 15]).

2.2. Tree Measurements. We recorded species, dbh, and
height of trees >10.16 cm dbh (diameter at breast height:
1.37 m above ground) in sample plots. Focal trees were felled
in order to accurately measure tree height, diameter inside
bark at breast height (dib), age, crown base height, 10-year
radial growth increment at breast height, and diameter of
the largest three branches. Crown base height was recorded
as the lower limit of the functional live crown, with small or
isolated branches below the main crown disregarded. The 10-
year radial growth increments and live crown ratios of focal
trees were measured as indicators of immediate past growth
and current vigor.

Because large branches are important wildlife habitat and
epiphyte substrate [21–23] and previous studies reported
increases in branch diameters due to early thinning [24,
25], diameter of the largest three branches of each focal
tree was measured to determine if thinning increased the
mean maximum branch diameter. The number of branches
measured on each tree was within the range of previous
studies’ sampling intensity, which ranged from measuring
the thickest branch on each tree [26] to every branch on
each tree [22, 27]. Selection of the largest three branches was
confined to the functional live crown, and branch caliper was
measured 10 cm from the main stem.

The ratio of tree height to diameter at breast height (h:d;
same units) is a metric that is frequently employed to assess a
tree’s mechanical resistance to stem breakage [28]. Lower h:d
ratios are strongly and negatively associated with increased
mechanical resistance to stem breakage typically caused by
snow, ice, and wind, for conifer species [12]. Trees with
h:d ratios lower than approximately 80 : 1 have consistently
proven resistant to windthrow and windsnap, whereas trees
with ratios above that threshold are substantially more
susceptible to damage [12, 29]. Because bark thickness
differed substantially between redwood and Douglas-fir, and
bark contributes little to the mechanical strength of the
tree stem, we employed a modified h:d ratio using the
within-bark breast-height diameter (dib, h:dib) instead of
dbh (outside bark), in order to isolate differences in each
species’ response to thinning. This helped us avoid artificially
inflating redwood’s relative improvement in stability due to
its relatively thicker bark.

2.3. Data Analyses. Stand level responses to thinning were
calculated using all trees in each sample plot. Tree level
responses to thinning were measured using only focal
trees in the larger plots. Data from thinned stands and
unthinned stands were compared via two-sample t-tests,
utilizing both stand characteristics [density, basal area, stand
density index (SDI), and quadratic mean diameter (QMD)]
and individual focal tree characteristics (dib, 10-year radial
growth, live crown ratio, h:dib ratio, and mean maximum
branch caliper). Diameter and height distributions were
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Table 1: Mean tree density (stems ha−1), basal area (m2 ha−1), quadratic mean diameter (QMD), and stand density index (SDI) of thinned
and unthinned coast redwood—Douglas-fir stands at the Mill Creek Property. Significant differences (∗) were determined via two-sample
t-tests at α = 0.05.

Thinned Unthinned

Douglas-fir Redwood Overall Douglas-fir Redwood Overall

Density (trees ha−1) 320 (61%) 205 (39%) 525∗ 664 (58%) 480 (42%) 1144

Basal area (m2 ha−1) 31.7 (52%) 29.0 (48%) 60.7 41.1 (55%) 33.8 (45%) 75.0

QMD (cm) 36.1∗ 43.2∗ 39.7∗ 27.5 27.6 27.5

SDI 383∗ 574
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Figure 2: Collective diameter distributions of thinned stands (a) and unthinned stands (b) at the Mill Creek Property.

calculated with 5 cm diameter classes and 2 m height classes.
From stand data we calculated stand density index (SDI)
to compare the level of competition between thinned and
unthinned stands. SDI is a common diagnostic tool for
assessing degrees of stand-level competition [30, 31] and
is founded upon size-density relationships [32]. For all
statistical analyses, significance was determined at α =
0.05. Each dataset was evaluated for its conformity to the
assumptions of these analyses; assumptions of normality and
equal variances were not rejected (all P > 0.05) for any
datasets used in this study.

3. Results

3.1. Stand Level Responses. Unthinned stands averaged
1,144 trees ha−1, and thinned stands contained 54% fewer
trees (P < 0.003, Table 1). The level of competition as
assessed using SDI was 50% higher in unthinned stands
(574) than thinned stands (383) (P < 0.02). Thinning did
not affect species composition by either density (trees ha−1)
and basal area (m2 ha−1) (P > 0.05); thinned and unthinned
stands were both dominated by Douglas-fir (60% of density
and 54% of basal area).

Thinning substantially enhanced diameter growth.
Quadratic mean diameter was 44% greater in thinned
stands than in unthinned stands (P < 0.001), and redwood
QMD was more strongly affected (57% improvement) than
Douglas-fir (31% improvement). The diameter distributions

(Figure 2) revealed that thinned stands contained 123%
more trees exceeding 40 cm dbh; within those larger
diameter classes, the proportion of redwood was 26% greater
than unthinned stands. The reduction in stand density from
thinning is illustrated by the sharp reduction in density in
the smaller diameter classes (<25 cm, Figure 2). The height
distribution of thinned and unthinned stands shows the
removal of stems occupying shorter height classes (<26 m,
Figure 3) due to thinning. Thinning did not enhance canopy
height, but it did result in thinned stands containing 22%
more trees exceeding than 32 m than unthinned stands
(Figure 3).

3.2. Focal Tree Responses. Thinning effects were observed for
all measures of focal tree responses, and redwood’s responses
exceeded Douglas-fir’s in every measure. Focal tree dib was
35% larger in thinned stands (39.1 cm) than unthinned
stands (29.0 cm, P < 0.001, Figure 4). The dib difference
was stronger for redwood (43% increase) than Douglas-
fir (28% increase). Focal trees in thinned stands had 70%
greater 10-year radial growth increment than unthinned
stands (P < 0.001, Figure 5). Redwood was more positively
affected by thinning, experiencing 99% greater radial growth
over unthinned stands, whereas Douglas-fir radial growth
was 45% greater. Live crown ratios in thinned stands were
27% greater than unthinned stands, increasing from a mean
live crown ratio of 39% to 50% (P < 0.001, Figure 6).
Redwood’s live crown ratio was 36% greater, and the crown
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Figure 3: Collective height distributions of thinned stands (a) and unthinned stands (b) at the Mill Creek Property.
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ratio of Douglas-fir trees was 19% greater in thinned stands.
Mean maximum branch diameter was 35% larger in thinned
stands (39.4 mm) than unthinned stands (29.1 mm, P <
0.001). Although redwood exhibited a greater branch size
difference between thinned and unthinned stands (redwood
55%, Douglas-fir 20%), Douglas-fir possessed larger mean
maximum branch calipers in both thinned and unthinned
stands (P < 0.008, Figure 7). The mean h:dib ratio of
focal trees was 18% lower in thinned stands (87.5) than
unthinned stands (106.2, P < 0.001, Figure 7). The h:dib

ratio of redwood was 26% lower and Douglas-fir 11% lower
in thinned stands than unthinned stands.

4. Discussion

To restore redwood dominance and historic stand structures
to second-growth forests, restoration treatments may be nec-
essary to ameliorate artifacts of timber management, includ-
ing unnaturally high stand densities and altered species
compositions [2, 33]. The historic stand conditions surveyed
in the 1969 forest inventories of uncut timberland in the
Mill Creek Property, where old-growth forest conditions
still existed, revealed low stand densities, averaging only 79
trees ha−1, with 82% of the volume comprised of redwood
and only 12% Douglas-fir [34]. Existing stump evidence
and surrounding undisturbed stands at Mill Creek seem to
validate those data.

In this study, redwood was underrepresented in both
thinned and unthinned stands compared to historic con-
ditions. This divergence from historic composition persists
in thinned stands because the thinning conducted at Mill
Creek was designed for volume production and did not
attempt to alter species composition. Although redwood is
still compositionally under-represented, this analysis reveals
that redwood’s competitive potential for future dominance
was higher in thinned stands because of redwood’s relatively
greater responses to thinning relative to Douglas-fir. Red-
wood’s improved response to thinning positions the species
for gains in proportional composition, as stand development
progresses. An opportunity exists to further increase the
potential for redwood dominance, by preferentially retaining
redwood and preferentially removing Douglas-fir preferen-
tially removed in later thinnings.

The densities of stems (trees ha−1) in both thinned and
unthinned stands were high relative to old-growth stands.
Studies in the redwood region [35–37] have documented
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old-growth stand densities averaging fewer than 200 trees
ha−1, much lower those we found in either thinned
(525 trees/ha) or unthinned (1,144 trees/ha) stands at Mill
Creek (Table 1). Sprouting of redwood and artificial regen-
eration of Douglas-fir contributed to high tree densities.

Declines in vigor (measured using live crown ratio) and
growth (measured using the 10-year radial growth incre-
ment) negatively affect a stand’s ability to respond to future
thinnings and compromise a stand’s potential developmental

pathways [13]. In this study, thinning resulted in 27% greater
live crowns (Figure 5), apparently due to slowed crown
recession which permitted trees to accrete crown length.
The greater live crowns resulted in improvment in tree
growth and vigor, as exhibited by the 70% greater 10-year
radial growth increment (Figure 5). Slower diameter growth
increases the amount of time required for trees to reach
historic proportions [3].

Restoration of coast redwood—Douglas-fir stands would
be incomplete if it did not promote habitat for special
interest plant and animal species. In the redwood region,
large branches are considered critical habitat for plant and
animal species [21, 23, 38]. In this study, mean maximum
branch diameter of thinned stands (39.1 mm) was signifi-
cantly larger than unthinned stands (29.0 mm), and mean
maximum branch diameter of Douglas-fir was larger than
redwood (Figure 6).

In regions where wind- and snow-caused tree mortality
are common, differences in stability between trees competing
for canopy dominance have implications for long-term
species composition. Wind storms are a significant source
of stand-level disturbance in forests of the Pacific coastal
United States [12, 28, 39]. For conifers, damage from snow
loads, ice storms, and windsnap is largely a function of h:d
ratio [40]. Focal trees in this study possessed lower h:dib
ratios as a result of thinning, indicating their relatively greater
resistance to wind and snow damage than unthinned stands
[12]. Wind and snow damage in mature trees frequently
creates complex canopy architecture (e.g., reiterated tops and
large branches) that can be desirable plant and animal habitat
features [22, 38, 41], but widespread stem breakage in young
dominant trees impedes stand development and can render
restoration treatments counterproductive.

In this study, redwood and Douglas-fir focal trees had sim-
ilar h:dib ratios in unthinned stands, but redwood responded
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more positively to thinning than Douglas-fir, improving its
h:dib by 26%. In thinned stands, the h:dib ratio of redwood
was 14% lower than Douglas-fir, indicating Douglas-fir’s
relatively greater susceptibility to wind damage. We suggest
employing the h:dib ratio of focal trees as a method to assess
and compare the stability of conifer species with differing
bark thickness and to provide insight on future stand
development and vulnerabilities of each species. Because
focal trees in unthinned stands of this study exhibited
unstable h:dib ratios, future thinning of these stands should
be conducted, in a conservative manner to limit wind
exposure [12, 29, 42].

The form of early-stage thinning described here yielded
restoration benefits that can be distinguished from tra-
ditional low thinning [43], variable-density thinning as
typically employed in older stands [44, 45], or even early-
stage variable-density thinning that seeks to establish low
stand density and substantial canopy gaps in a single-phase
restoration strategy [10, 46]. In contrast to those strategies,
early-stage thinning, as part of a multiphase restoration strat-
egy, represents a restoration compromise between efficiency
and risk; it provides limited release from competition while
retaining sufficient density to buffer mortality and limit wind
exposure.

In a recent study focused on variable-density thinning’s
influence on wind damage, Roberts and others [42] recom-
mended that stands with high stem densities and exhibiting
unstable h:d ratios be treated with a light uniform thinning
prior to prescribing variable-density thinning. Applied in
that patient restoration strategy, early-stage thinning would
promote a population of more stable and vigorous trees

around which complex restoration treatments can subse-
quently be designed at a time more appropriate in later stages
of stand development. We suggest that managers of young
mixed redwood—Douglas-fir stands consider, among other
options, a two-stage restoration strategy that utilizes early-
stage thinning as an initial treatment (focused on species
composition and tree-level growth, vigor, and stability), to
be followed later by variable-density thinning that focuses on
the promotion of spatial heterogeneity and the cultivation of
structural elements such as coarse woody debris and snags.
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