4,975 research outputs found

    Acidosis Is a Key Regulator of Osteoblast Ecto-Nucleotidase Pyrophosphatase/Phosphodiesterase 1 (NPP1) Expression and Activity

    Get PDF
    Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (Pi) to pyrophosphate (PPi) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both Pi and PPi, a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto‐nucleotidases. This study investigated the expression and activity of ecto‐nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto‐nucleotidases including NTPdase 1–6 (ecto‐nucleoside triphosphate diphosphohydrolase) and NPP1‐3 (ecto‐nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1 > NTPdase 4 > NTPdase 6 > NTPdase 5 > alkaline phosphatase > ecto‐5‐nucleotidase > Enpp3 > NTPdase 1 > NTPdase 3 > Enpp2 > NTPdase 2. Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8‐fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto‐nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (P < 0.001). Release of ATP, one of the key substrates for NPP1, from osteoblasts, was unaffected by acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5‐fold, P < 0.001) and was partially resistant to the inhibitory effect of acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions

    Atlantic CFC data in CARINA

    Get PDF
    Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a “poor” quality flag

    Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields

    Full text link
    Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell [PIC] code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum, and a divergent angle spectrum (average velocity-space polar angle of 52 degrees). Transport simulations with the PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a modest 70 micron standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields ~50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields are however more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.Comment: 16 pages, 17 figures, submitted to Phys. Plasma

    Measurement of one-particle correlations and momentum distributions for trapped 1D gases

    Full text link
    van Hove's theory of scattering of probe particles by a macroscopic target is generalized so as to relate the differential cross section for atomic ejection via stimulated Raman transitions to one-particle momentum-time correlations and momentum distributions of 1D trapped gases. This method is well suited to probing the longitudinal momentum distributions of 1D gases in situ, and examples are given for bosonic and fermionic atoms.Comment: 4 pages, 2 .eps figure

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure

    Biometric variables predict stone tool functional performance more effectively than tool‐form attributes: a case study in handaxe loading capabilities

    Get PDF
    Both the form of a stone tool and the anatomy of the individual using it have potential to influence its cutting performance. To date, however, the selective pressures acting on stone‐tool form and hominin biometric/biomechanical attributes have been investigated in isolation and their relative influence on performance have never been compared directly. This paper examines the influence of both tool‐form attributes and biometric variation on the functional performance of Acheulean handaxes. Specifically, it investigates the impact of 13 tool attributes and eight biometric traits on the working forces applied through the edge of 457 replica tools. The relative contribution of tool‐form and biometric attributes to handaxe loading levels were examined statistically. Results identify that both tool‐form attributes and biometric traits are significantly related to loading; however, tool–user biometric variation has a substantially greater impact relative to tool‐form attributes. This difference was demonstrated by up to a factor of 10. These results bear directly on the co‐evolutionary relationships of stone tools and hominin anatomy, and the comparative strength of selective pressure acting on each. They also underline why handaxe forms may have been free to vary in form across time and space without necessarily incurring critical impacts on their functional capabilities
    corecore