6,765 research outputs found

    Toward high practical capacitance of Ni(OH)(2) using highly conductive CoB nanochain supports

    Get PDF
    Ultrathin porous Ni(OH)2 sheets were grown on the surface of nano-chain CoB as cores via a facile two-step solution-based method at ambient conditions. The resultant CoB@Ni(OH)2 of 27.89 wt% Ni(OH)2 loading has a high specific capacitance of 1504.4 F g−1 at 0.5 A g−1, 1293.7 F g−1 at 2 A g−1 and 746.8 F g−1 at 6 A g−1

    Sequential Adaptive Detection for In-Situ Transmission Electron Microscopy (TEM)

    Full text link
    We develop new efficient online algorithms for detecting transient sparse signals in TEM video sequences, by adopting the recently developed framework for sequential detection jointly with online convex optimization [1]. We cast the problem as detecting an unknown sparse mean shift of Gaussian observations, and develop adaptive CUSUM and adaptive SSRS procedures, which are based on likelihood ratio statistics with post-change mean vector being online maximum likelihood estimators with 1\ell_1. We demonstrate the meritorious performance of our algorithms for TEM imaging using real data

    Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material

    Get PDF
    This study presents the preparation of novel cage-like MnO2-Mn2O3 particles that have high surface area and macro-porosity. Carbonaceous (C) spheres were first prepared hydrothermally as templates for a subsequent hydrothermal step of MnO2 shell precipitation. Adjusting the Mn precursor concentration and hydrothermal dwell time resulted in MnO2 shells of different thickness. Following calcination to remove carbon, thinner shells resulted in cage-like structure and a higher degree of Mn2O3 content, while thicker shells produced complete hollow spheres. The cage-like MnO2-Mn2O3 hollow spheres (CMHS) produced a 30% larger specific capacity than that of complete hollow spheres at 0.05 A g−1. On a 100 fold current density increase to 5 A g−1 CMHS had a 49.9% of its initial specific capacitance, and had 77.4% capacitance retention after 2000 cycles at 2 A g−1. Cage-like particles, through their high surface area and macro-porosity, thus afford a promising target structure for supercapacitor materials, and can be prepared as described herein

    Overview of the Nordic Seas CARINA data and salinity measurements

    Get PDF
    Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005

    Surface Effects in Magnetic Microtraps

    Full text link
    We have investigated Bose-Einstein condensates and ultra cold atoms in the vicinity of a surface of a magnetic microtrap. The atoms are prepared along copper conductors at distances to the surface between 300 um and 20 um. In this range, the lifetime decreases from 20 s to 0.7 s showing a linear dependence on the distance to the surface. The atoms manifest a weak thermal coupling to the surface, with measured heating rates remaining below 500 nK/s. In addition, we observe a periodic fragmentation of the condensate and thermal clouds when the surface is approached.Comment: 4 pages, 4 figures; v2: corrected references; v3: final versio

    Does lateral lift-off occur in static and dynamic activity in a medially spherical total knee arthroplasty? A pulsed-fluoroscopic investigation.

    Get PDF
    Objectives: The medially spherical GMK Sphere (Medacta International AG, Castel San Pietro, Switzerland) total knee arthroplasty (TKA) was previously shown to accommodate lateral rollback while pivoting around a stable medial compartment, aiming to replicate native knee kinematics in which some coronal laxity, especially laterally, is also present. We assess coronal plane kinematics of the GMK Sphere and explore the occurrence and pattern of articular separation during static and dynamic activities. Methods: Using pulsed fluoroscopy and image matching, the coronal kinematics and articular surface separation of 16 well-functioning TKAs were studied during weight-bearing and non-weight-bearing, static, and dynamic activities. The closest distances between the modelled articular surfaces were examined with respect to knee position, and proportions of joint poses exhibiting separation were computed. Results: Overall, 1717 joint poses were analyzed. At a 1.0 mm detection threshold, 37 instances of surface separation were observed in the lateral compartment and four medially (p < 0.001). Separation was activity-dependent, both laterally and medially (p < 0.001), occurring more commonly during static deep flexion in the lateral compartment, and during static rotation in the medial compartment. Lateral separation occurred more frequently than medial during kneeling (7/14 lateral vs 1/14 medial; p = 0.031) and stepping (20/1022 lateral vs 0/1022 medial; p < 0.001). Separation varied significantly between individuals during dynamic activities. Conclusion: No consistent association between closest distances of the articular surfaces and knee position was found during any activity. Lift-off was infrequent and depended on the activity performed and the individual knee. Lateral separation was consistent with the design rationale. Medial lift-off was rare and mostly in non-weight-bearing activities.Cite this article: S. Key, G. Scott, J.G. Stammers, M. A. R. Freeman†, V. Pinskerova, R. E. Field, J. Skinner, S. A. Banks. Does lateral lift-off occur in static and dynamic activity in a medially spherical total knee arthroplasty? A pulsed-fluoroscopic investigation. Bone Joint Res 2019;8:207-215. DOI: 10.1302/2046-3758.85.BJR-2018-0237.R1

    Realization of Bose-Einstein condensates in lower dimensions

    Full text link
    Bose-Einstein condensates of sodium atoms have been prepared in optical and magnetic traps in which the energy-level spacing in one or two dimensions exceeds the interaction energy between atoms, realizing condensates of lower dimensionality. The cross-over into two-dimensional and one-dimensional condensates was observed by a change in aspect ratio and saturation of the release energy when the number of trapped atoms was reduced
    corecore