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Cage-like MnO2-Mn2O3 hollow spheres with high specific 
capacitance and high rate capability as supercapacitor material 

Rongfang Wang,*a Yuanyuan Ma,a Hui Wang,a Julian Key,b Dan Brett,c and Shan Ji*c 

Carbonaceous spheres were first prepared hydrothermally as 

templates for a subsequent hydrothermal step of MnO2 shell 

precipitation. Following calcination to remove carbon, thinner 

shells resulted in cage-like MnO2-Mn2O3 hollow spheres with high 

specific capacitance and high rate capability as supercapacitor 

material. 

The development of active materials for aqueous electrolyte-

based supercapacitors has attracted much research interest in recent 

years. Aqueous cell formats offer the advantages of lower 

material/construction costs and are less toxic than their organic 

electrolyte counterparts. However, due to the low cell voltage of 

aqueous systems, their active material must reach higher values of 

both specific capacitance (F g-1) and rate performance (F g-1 at high 

current density A g-1) to be competitive1. Hollow-structured 

electrode materials improve these properties due to their large 

surface area, high porosity, and shell permeability2-4. Furthermore, 

different synthesis strategies have managed to achieve hollow 

spheres5-7, cubes8, polyhedrons2 and bowls9, and their manipulation 

into double-layer shells10, 11 and multi-layer shells12, 13. Hollow-

nanostructured manganese oxides are attractive due to the high 

abundance, environmental friendliness and high theoretical specific 

capacity of manganese oxides 2, 14-17. Various studies have reported 

hollow MnO2 structures such as spheres14-16, 18, tubes19, urchin20, and 

paramecium21, prepared using methods employing oxidation-

etching and hard-templates. These hollow-structured MnO2 crystals 

have a specific capacitance range of ~100 to 300 F g-1 at current 

densities lower than 2 A g-1. For example, Zhang and co-workers 

reported high specific capacitance of 210.2 F g-1 at 0.2 A g-1 in double-

shelled MnO2 hollow spheres synthesized via a self-templating 

route22. In such works, the shells usually form a completely 

continuous layer. However, hollow material with a cage-like shell 

(illustrated in Fig. 1) would perceivably provide an even larger 

material surface area, and also provide channels for rapid electrolyte 

ion movement. This would thus improve the material’s performance 

in both supercapacitor and catalyst applications 23-25. In other 

reports, hybridizing different phases of manganese oxides has 

resulted in increased overall specific capacitance. For instance, 

Mn2O3-Mn3O4 fibers of 360.7 F g-1 at 1 A g-1 produced higher specific 

capacitance than that of either respective single phase due to a 

proposed reduced interfacial resistance of the mixed-phase 

manganese oxides26. Similarly, manganese oxide hybrids, Mn2O3-

Mn3O4
27, 28, MnO-Mn3O4

29, have also produced enhanced electrode 

performance as supercapacitor material, and on this basis other 

manganese oxides hybrids are also clearly worth exploring.  

In the present study, cage-like MnO2-Mn2O3 hollow spheres 

(CMHS) were prepared using a carbon template method. 

Carbonaceous (C) spheres were chosen as the removable template, 

as has been used in other studies to produce hollow materials such 

as TiO2
30, Mn2O3

31 and  MnO2
17. The C spheres have the advantages 

of  ease of large-scale preparation, good dispersion in solvents, and 

easy removal by calcination in air. Herein, it was found that by 

reducing the concentration of Mn precursor in combination with 

reducing hydrothermal dwell time, cage-like mixed phase MnO2-

Mn2O3 hollow spheres (CMHS) could be produced. Interestingly, the 

Mn2O3 phase was practically absent in the MnO2 hollow spheres 

(MHS), suggesting that reduction via carbon to form Mn2O3 was 

lessened in higher concentrations of manganese precursor. The 

CMHS particles produced higher specific capacitance than MHS and 

had correspondingly higher rate capability, suggesting that both 

hybrid composition and cage-like structure accounted for this 

improvement. 

Fig. 1 shows the strategy for synthesizing uniform cage-like MnO2-

Mn2O3 hollow spheres (CMHS) and MnO2 hollow spheres (MHS). 

Firstly, C spheres (SEM image provided in Fig. S1) are synthesized 

hydrothermally, followed by a second hydrothermal treatment in the 

presence of KMnO4 to form C@MnO2 core/shell structures, followed 
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by their calcination in air to remove the carbon by oxidation. CMHS 

(Fig. 2) was formed by reducing the concentration of Mn precursor 

in combination with reducing hydrothermal dwell time. 

 

Fig. 1 Synthesis route of hollow manganese oxide shells and cage-

like shells  

Fig. S2 shows the morphology of the CMHS core/shell precursors, 

C@MnO2-1, which appear as spheres with smooth outer surfaces (as 

prepared by hydrothermal reaction). Their diameters ranged 

between 400 to 800 nm due to size variation of the C spheres. 

Transmission electron microscopy (TEM) in Fig. S2c shows the visible 

contrast between shell and core, with high-resolution TEM (HRTEM) 

in Fig. S2d showing the shell thickness to be ~80 nm. The core-shell 

structure was also confirmed by the overlapped elemental mapping 

of C, Mn, and O image (Fig. S2f-m). Powder X-ray diffraction (XRD) 

analysis (Fig. S3), shows the phase of C@MnO2 indexed to monoclinic 

δ-MnO2 (JCPDS PDF 43-1456). After calcination, the uniform 

spherical morphology for CMHS was perfectly retained (Fig. 2a), and 

the cage-like surface of CMHS is clearly shown in the magnified SEM 

images (Fig. 2b). The typical diameter of CMHS decreases slightly to 

~400–600 nm. This could be due to a contraction effect caused by 

the decomposition of C spheres at elevated temperature30. The cage-

like surface and hollow center of CMHS is clearly shown in the TEM 

image (Fig. 2c). The magnified TEM image in Fig. 2d shows that the 

surface of CMHS was composed of connected nanocrystals. HRTEM 

(Fig. 2e) shows the microstructure of the nanocrystals had clear 

lattice fringes, indicating the product was highly crystalline after 

calcination. The interplanar distance between the lattice fringes 

measured 0.21 nm, which indexes to (420) crystal planes of cubic 

Mn2O3. Powder X-ray diffraction (XRD) analysis (Fig. 2F) shows the 

phase of CMHS indexed to the tetragonal α-MnO2 (JCPDS PDF 72-

1982) and cubic Mn2O3 (JCPDS PDF 41-1442). Therefore, CMHS is a 

mixed phased hybrid of α-MnO2 and Mn2O3. The transformation of 

δ-MnO2 into Mn2O3 is likely to have occured via reduction of δ-MnO2 

by carbon. Brunauer–Emmett–Teller (BET) analysis of CMHS (Fig. S4) 

shows it had a relatively high specific surface area of 54.2 m2 g-1. 

For comparison, MHS (with a complete shell )  was also 

characterized. The surface of the MHS precursor, C@MnO2-2, (Fig. 

S5a and b) comprised connected MnO2 nanoflakes ranging from 0.5-

1 μm. TEM (Fig. S5c,d) shows the rough surface of C@MnO2-2 

core/shell spheres and the thickness of the shell to be ~150 nm. The 

core-shell structure of the C@MnO2-2 spheres is also confirmed by 

the overlapped elemental mapping of C, Mn, and O image (Fig. S5 e-

i). Compared to C@MnO2-1, the thickness of the shell for C@MnO2-

2 was considerable larger. After calcination, the spherical 

morphology was perfectly retained in the resultant MHS (Fig. 3a), 

and the surface of  the spheres  remained composed of 

 

Fig. 2 Physical characterization of CMHS: (a, b) SEM; (c-e) TEM; and 

(f) XRD. 

well connected nanoparticles (Fig. 3b). The hollow center of the 

annealed product is clearly shown through the TEM images (Fig. S3c 

and d) and the shell thickness was ~70 nm with a relatively rough 

outer surface. The typical diameter of MnO2 hollow spheres ranged 

between ~500-800 nm, and was larger than that of CHMS (~400-600 

nm). The XRD pattern (Fig. S6), again indexed to tetragonal α-MnO2 

(JCPDS PDF 72-1982) and cubic Mn2O3 (JCPDS PDF 41-1442). 

However, compared to the CMHS XRD pattern, the intensity of the 

cubic Mn2O3 peaks were considerably reduced, likey resulting from 

the higher loading of MnO2 relative to the amount of carbon. The BET 

specific surface area of MHS was 34.1 m2 g-1 (Fig. S7) and less than 

that of CHMS (54.2 m2 g-1). 

  The electrochemical performance of CHMS and MHS was evaluated 

by cyclic voltammetry (CV) and galvanostatic charge–discharge 

cycling in three-electrode cells containing 0.5 mol L-1 Na2SO4 

electrolyte. Fig. 4a shows CV curves of the CMHS electrodes carried 

out over potential range of -0.654 ~ 0.146 V vs. Hg/Hg2SO4 at scan 

rates of 1, 2, 5, 10, 20, 50 and 100 mV s-1. The CV plots all occurred 

as approximately symmetric rectangles without any apparent redox 

peaks, and were therefore indicative of capacitive 

charge/discharging 32, 33. At high scan rates from 10 to 100 mV s-1, the 

CV curves show distortion from rectangular shape owing to electrode 

polarization. The charge mechanism of manganese oxides in 

electrolytes containing alkaline metal cations (A+) is shown below, 

where transition between Mn3+ and Mn4+ occurs at surface sites 

accessible to electrolyte ions 34. 

MnO2 + A+ +e-  MnOOA+ 
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Fig. 3 Physical characterization of MHS: (a, b) SEM; and (c, d) TEM. 

Capacitance via the above mechanism at high scan rates or high 

current densities is thought to only occur within a thin surface layer 

of manganese oxides 35. However, at very low scan rates, A+ ions may 

also intercalate deeper into the material structure, which can raise 

the observed specific capacitance. At high scan rates electrode 

polarization typically lowers the available specific capacitance 36. 

Fig. 4b shows the specific capacitance (Csp,CV, F g-1) values of CMHS at 

different scan rates calculated from the CV plots (note: CV plots for 

MHS are shown Fig. S8). For both CHMS and MHS, increasing scan 

rates decreased the specific capacitance due to limitations in the Na+ 

diffusion rate 14. At a scan rate of 1 mV s-1, CMHS and MHS produced 

Csp,CV specific capacitances of 239.8 F g-1 and 178.3 F g-1 respectively. 

The higher CMHS value coincides with its higher BET value, which is 

in accordance with theory 37-40. In addition, the specific balance of 

mixed phases in CMHS may be another factor contributing to its 

higher observed specific capacitance, resulting from possibly 

improved surface conductivity 26-29. 

   

   

Fig. 4. (a) CV curves of the CMHS at scan rate of 1, 2, 5, 10, 20, 50 and 

100 mV s-1; (b) specific capacitance as calculated from CV for CMHS 

and MHS; (c) galvanostatic charge-discharge curves of CMHS at 0.5 

to 5 A g-1; and (d) rate capability of CMHS and MHS. 

To determine the electrochemical performance of CMHS and MHS 

under galvanostatic cycling conditions, cycling was carried out over a 

0.05 A g-1 to 5 A g-1 current range (Fig. 4c and Fig. S9). At a current 

density of 0.05 A g-1, the respective discharge specific capacitances 

(Csp,Dis) of CMHS and MHS were 191.9  F g-1 and 134.9 F g-1. This 

pattern matched that of the CV results, and in comparison with 

previous reports on hollow-structured manganese oxides, the 

specific capacitance for CMHS produced via CV and galvanostatic 

cycling are quite competitive. Previously reported values include: 

hollow MnO2 spheres of 115 F g-1 at 0.5 A g-1 in 1 M Na2SO4 

electrolyte 14; double-shelled MnO2 hollow spheres of 210.2 F g-1 at 

0.2 A g-1 in 1 M Na2SO4 electrolyte 22; hollow α-MnO2 of 167 F g-1 at 

2.5 mA cm-2 in 1 M Na2SO4 electrolyte 18; and nano-structured MnO2 

hollow spheres of 147 F g-1 at 0.2 A g-1 in 1-butyl-3-

methylimidazolium hexaurophosphate in DMF electrolyte 41. 

However, MnO2 hollow paramecium of 554.3 F g-1 at 1 A g-1 21 and 

hollow tubular MnO2 of 315 F g-1 at 0.2 A g-1 19 are the exceptionally 

high examples in the field.  

Fig. 4d shows the Csp,Dis of both CMHS and MHS gradually 

decreased with increasing current density, which matches previous 

literature on MnO2 electrodes17, 39, 42. Increasing current density thus 

decreases mass efficiency/utilization. As current density was 

increased from 0.05 A g-1 to 5 A g-1 (Fig. 4d), CMHS and MHS retained 

49.9% and 38.3% of their initial specific capacitance respectively, i.e. 

with CMHS decreasing from 191.9 F g-1 to 95.7 F g-1, and MHS 

decreasing from 134.9 F g-1 to 51.6 F g-1. Therefore, the higher rate 

capability of CMHS suggests its open cage-like structure facilitates 

faster electrolyte ion movement to and from its accessible surface 

area.  

Long-term cycling stability of electrode material is an important 

factor for practical applications. Fig. S10 shows the specific 

capacitance retention of CMHS and MHS after 2000 charge-discharge 

galvanostatic cycles at 2 A g-1 were 77.4% and 68.2% respectively. 

The high cycling stability of CMHS is comparable to that of various 

reported MnO2-based electrodes33, 35, 42 such as carbon@MnO2 core-

shell spheres 33 and mesoporous MnO2/polyaniline hollow spheres42, 

but lower than hollow MnO2 tubes19 and nano-structured MnO2 

hollow spheres in 1-butyl-3-methylimidazolium hexaurophosphate 

in DMF electrolyte 41. However, in our case it was found that the 

electrolyte did slightly discolour after 2000 cycles. This indicates the 

dissolution of the MnO2 to soluble Mn2+ at low potentials, which is a 

main cause of capacitance loss in MnO2-based supercapacitors43. 

This may suggest that CMHS and MHS are less stable than other 

forms of MnO2 at low potentials (a possibility we are currently 

investigating). Overall, however, the improved specific capacitance, 

rate capability, and long-term capacity retention of the cage like 

particles offers a promising target structure for future research.  

In summary, cage-like MnO2Mn2O3 hollow spheres (CHMS) were 

successfully prepared using hydrothermal synthesis on carbon 

sphere templates, followed by template removal via calcination. Mn 

precursor concentration and hydrothermal dwell time were tuneable 

to produce CHMS or complete shell structure (MHS – manganese 

oxide hollow spheres). Cage-like structure resulted from reduced 

thickness of the MnO2 shell of the CMHS precursor, which also 

increased the amount of Mn2O3 to MnO2 content after carbon 

template removal, possibly through greater reduction of MnO2 by 

carbon. The BET surface area of CMHS, owing to its cage-like 
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structure, was ~37% larger than that of MHS. At a CV scan rate of 

1 mV s-1 the specific capacitance of CMHS and MHS were 239.8 F g-1 

and 178.3 F g-1 respectively. With a current density increase from 

0.05 A g-1 to 5 A g-1, CMHS and MHS retained 49.9% and 38.3% of 

their initial specific capacitance. After 2000 cycles at 2 A g-1, CMHS 

and MHS retained 77.4% and 68.2% of their initial specific 

capacitance. Therefore, CMHS had improved specific capacitance, 

rate capability, and long-term capacity retention. These properties 

correlate to the higher available surface area and greater macro- 

porosity of CMHS. Cage-like particles thus offer a promising target 

structure for supercapacitor material, and adjusting precipitate 

coating thickness offers a simple approach for their synthesis.   
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