6 research outputs found

    Isolable Analogues of the Breslow Intermediate Derived from Chiral Triazolylidene Carbenes

    No full text
    Since Breslow’s initial report on the thiamine mode of action, the study of catalytic acyl carbanion processes has been an area of immense interest. With the advent of azolylidene catalysis, a plethora of reactivtiy has been harnessed, but the crucial nucleophilic intermediate proposed by Breslow had never been isolated or fully characterized. Herein, we report the isolation and full characterization of nitrogen analogues of the Breslow intermediate. Both stable and catalytically relevant, these species provide a model system for the study of acyl carbanion and homoenolate processes catalyzed by triazolylidene carbenes

    Isolable Analogues of the Breslow Intermediate Derived from Chiral Triazolylidene Carbenes

    No full text
    Since Breslow’s initial report on the thiamine mode of action, the study of catalytic acyl carbanion processes has been an area of immense interest. With the advent of azolylidene catalysis, a plethora of reactivtiy has been harnessed, but the crucial nucleophilic intermediate proposed by Breslow had never been isolated or fully characterized. Herein, we report the isolation and full characterization of nitrogen analogues of the Breslow intermediate. Both stable and catalytically relevant, these species provide a model system for the study of acyl carbanion and homoenolate processes catalyzed by triazolylidene carbenes

    Isolable Analogues of the Breslow Intermediate Derived from Chiral Triazolylidene Carbenes

    No full text
    Since Breslow’s initial report on the thiamine mode of action, the study of catalytic acyl carbanion processes has been an area of immense interest. With the advent of azolylidene catalysis, a plethora of reactivtiy has been harnessed, but the crucial nucleophilic intermediate proposed by Breslow had never been isolated or fully characterized. Herein, we report the isolation and full characterization of nitrogen analogues of the Breslow intermediate. Both stable and catalytically relevant, these species provide a model system for the study of acyl carbanion and homoenolate processes catalyzed by triazolylidene carbenes

    Enantioselective Rhodium-Catalyzed Isomerization of 4‑Iminocrotonates: Asymmetric Synthesis of a Unique Chiral Synthon

    No full text
    An enantioselective isomerization of 4-iminocrotonates catalyzed by a rhodium­(I)/phosphoramidite complex is described. This reaction uses widely available amines to couple with 4-oxocrotonate to provide a convenient access to a central chiral building block in good yield and high enantioselectivity. Although the mechanism of this new transformation remains unclear, both Rh and the phosphoramidite play a central role

    Divergent Synthesis of Pyrone Diterpenes via Radical Cross Coupling

    No full text
    A divergent strategy for assembling pyrone diterpenes is presented. Capitalizing on the unique stereo- and chemoselectivity features of radical-based chemistry, the core decalin of these structures is efficiently forged using an electrochemically assisted oxidative radical polycyclization while key peripheral substituents are appended using decarboxylative radical cross couplings. In this way, access to four natural products (subglutinols A/B, higginsianin A, and sesquicillin A) is achieved in a concise and stereocontrolled fashion that is modular and amenable to future medicinal chemistry explorations

    Divergent Synthesis of Pyrone Diterpenes via Radical Cross Coupling

    No full text
    A divergent strategy for assembling pyrone diterpenes is presented. Capitalizing on the unique stereo- and chemoselectivity features of radical-based chemistry, the core decalin of these structures is efficiently forged using an electrochemically assisted oxidative radical polycyclization while key peripheral substituents are appended using decarboxylative radical cross couplings. In this way, access to four natural products (subglutinols A/B, higginsianin A, and sesquicillin A) is achieved in a concise and stereocontrolled fashion that is modular and amenable to future medicinal chemistry explorations
    corecore