983 research outputs found

    Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes

    Get PDF
    Metal nanoparticles are of significant importance for chemical and electrochemical transformations due to their high surface-to-volume ratio and possible unique catalytic properties. However, the poor thermal stability of nano-sized particles typically limits their use to low temperature conditions (<500 °C). Furthermore, for electrocatalytic applications they must be placed in simultaneous contact with percolating ionic and electronic current transport pathways. These factors have limited the application of nanoscale metal catalysts (diameter <5 nm) in solid oxide fuel cell (SOFC) electrodes. Here we overcome these challenges of thermal stability and microstructural design by stabilizing metal nanoparticles on a scaffold of Sm_(0.2)Ce_(0.8)O_(2−δ) (SDC) films with highly porous and vertically-oriented morphology, where the oxide serves as a support, as a mixed conducting transport layer for fuel electro-oxidation reactions, and as an inherently active partner in catalysis. The SDC films are grown on single crystal YSZ electrolyte substrates by means of pulsed-laser deposition, and the metals (11 μg cm^(−2) of Pt, Ni, Co, or Pd) are subsequently applied by D.C. sputtering. The resulting structures are examined by TEM, SIMS, and electron diffraction, and metal nanoparticles are found to be stabilized on the porous SDC structure even after exposure to 650 °C under humidified H_2 for 100 h. A.C. impedance spectroscopy of the metal-decorated porous SDC films reveals exceptionally high electrochemical reaction activity toward hydrogen electro-oxidation, as well as, in the particular case of Pt, coking resistance when CH_4 is supplied as the fuel. The implications of these results for scalable and high performance thin-film-based SOFCs at reduced operating temperature are discussed

    Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues

    Get PDF
    Non-typeable Haemophilus influenzae (NTHi) are human-adapted Gram-negative bacteria that comprise part of the normal flora of the human upper airway, but are also responsible for a number of mucosal infections such as otitis media and bronchitis. These infections often recur and can become chronic. To characterize the effect of long-term co-culture of NTHi with human tissues, we infected primary respiratory epithelial cells grown at the air–liquid interface with three NTHi strains over a range of 1–10 days. Scanning and transmission electron microscopy of tissues confirmed that intact NTHi were persisting paracellularly, while organisms observed in intracellular vacuoles appeared degraded. Furthermore, the apical surface and tight junctions of the infected tissues were undisturbed, with high transepithelial electrical resistances, while the basal cell layer displayed more junctional disorganization and wider intercellular spaces than the uninfected control tissues. Although the tissues elaborated the cytokine profile reported for NTHi-caused otitis media in vivo, there was little change in the dynamics of cytokine secretion over the time points tested. Finally, we report that NTHi strains released outer membrane vesicles (OMVs) during extended co-culture with the tissues, and show that these OMVs directly interact with host cell membranes

    Origin and stability of the charge density wave in ScV6_6Sn6_6

    Full text link
    Kagome metals are widely recognized as versatile platforms for exploring novel topological properties, unconventional electronic correlations, magnetic frustration, and superconductivity. In the RRV6_6Sn6_6 family of materials (RR = Sc, Y, Lu), ScV6_6Sn6_6 hosts an unusual charge density wave ground state as well as structural similarities with the AAV3_3Sb5_5 system (AA = K, Cs, Rb). In this work, we combine Raman scattering spectroscopy with first-principles lattice dynamics calculations to reveal the charge density wave state in ScV6_6Sn6_6. In the low temperature phase, we find a five-fold splitting of the V-containing totally symmetric mode near 240 cm1^{-1} suggesting that the density wave acts to mix modes of PP6/mmmmmm and RR3ˉ\bar{3}mm symmetry - an effect that we quantify by projecting phonons of the high symmetry state onto those of the lower symmetry structure. We also test the stability of the density wave state under compression and find that both physical and chemical pressure act to quench the effect. We discuss these findings in terms of symmetry and the structure-property trends that can be unraveled in this system

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression

    Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: Data from the Australian Imaging, Biomarkers and Lifestyle study of ageing

    Get PDF
    Accumulating research has linked Mediterranean diet (MeDi) adherence with slower cognitive decline and reduced Alzheimer\u27s disease (AD) risk. However, no study to-date has examined the relationship between MeDi adherence and accumulation of cerebral Aβ-amyloid (Aβ; a pathological hallmark of AD) in older adults. Cognitively normal healthy control participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Ageing completed the Cancer Council of Victoria Food Frequency Questionnaire at baseline, which was used to construct a MeDi score for each participant (score range 0-9; higher score indicating higher adherence). Cerebral Aβ load was quantified by Pittsburgh Compound B positron emission tomography at baseline, 18 and 36 months: Only individuals categorised as Aβ accumulators , and thus considered to be on the AD pathway, were included in the analysis (N = 77). The relationship between MeDi adherence, MeDi components, and change in cerebral Aβ load (baseline to 36 months) was evaluated using Generalised Linear Modelling, accounting for age, gender, education, Apolipoprotein E ε4 allele status, body mass index and total energy intake. Higher MeDi score was associated with less Aβ accumulation in our cohort (β = -0.01 ± 0.004, p = 0.0070). Of the individual MeDi score components, a high intake of fruit was associated with less accumulation of Aβ (β = -0.04 ± 0.01, p = 0.00036). Our results suggest MeDi adherence is associated with reduced cerebral AD pathology accumulation over time. When our results are considered collectively with previous data linking the MeDi to slower cognitive decline, it is apparent that MeDi adherence warrants further investigation in the quest to delay AD onset

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    Whole-Exome Sequencing in Familial Parkinson Disease

    Get PDF
    IMPORTANCE: Parkinson disease (PD) is a progressive neurodegenerative disease for which susceptibility is linked to genetic and environmental risk factors. OBJECTIVE: To identify genetic variants contributing to disease risk in familial PD. DESIGN, SETTING, AND PARTICIPANTS: A 2-stage study design that included a discovery cohort of families with PD and a replication cohort of familial probands was used. In the discovery cohort, rare exonic variants that segregated in multiple affected individuals in a family and were predicted to be conserved or damaging were retained. Genes with retained variants were prioritized if expressed in the brain and located within PD-relevant pathways. Genes in which prioritized variants were observed in at least 4 families were selected as candidate genes for replication in the replication cohort. The setting was among individuals with familial PD enrolled from academic movement disorder specialty clinics across the United States. All participants had a family history of PD. MAIN OUTCOMES AND MEASURES: Identification of genes containing rare, likely deleterious, genetic variants in individuals with familial PD using a 2-stage exome sequencing study design. RESULTS: The 93 individuals from 32 families in the discovery cohort (49.5% [46 of 93] female) had a mean (SD) age at onset of 61.8 (10.0) years. The 49 individuals with familial PD in the replication cohort (32.6% [16 of 49] female) had a mean (SD) age at onset of 50.1 (15.7) years. Discovery cohort recruitment dates were 1999 to 2009, and replication cohort recruitment dates were 2003 to 2014. Data analysis dates were 2011 to 2015. Three genes containing a total of 13 rare and potentially damaging variants were prioritized in the discovery cohort. Two of these genes (TNK2 and TNR) also had rare variants that were predicted to be damaging in the replication cohort. All 9 variants identified in the 2 replicated genes in 12 families across the discovery and replication cohorts were confirmed via Sanger sequencing. CONCLUSIONS AND RELEVANCE: TNK2 and TNR harbored rare, likely deleterious, variants in individuals having familial PD, with similar findings in an independent cohort. To our knowledge, these genes have not been previously associated with PD, although they have been linked to critical neuronal functions. Further studies are required to confirm a potential role for these genes in the pathogenesis of PD

    A Functional Gene Array for Detection of Bacterial Virulence Elements

    Get PDF
    Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples
    corecore