113 research outputs found

    A simple, accurate and cost-effective capillary electrophoresis test with computational methods to aid in universal microsatellite instability testing

    Get PDF
    Background: Microsatellite instability (MSI) testing is important for the classification of Lynch syndrome, as a prognostic marker and as a guide for adjuvant chemotherapy in colorectal cancer (CRC). The gold standard for determining MSI status has traditionally been fluorescent multiplex polymerase chain reaction (PCR) and capillary gel electrophoresis (CGE). However, its use in the clinical setting has diminished and has been replaced by immunohistochemical (IHC) detection of loss of mismatch repair protein expression due to practicability and cost. The aim of this study was to develop a simple, cost-effective and accurate MSI assay based on CGE. Method: After amplification of microsatellites by polymerase chain reaction (PCR) using the National Cancer Institute (NCI) panel (BAT 25, BAT26, D5S346, D2S123, D17S250) of MSI markers, parallel CGE was utilized to classify colorectal cancers as MSI-H, MSI-L and MSS using the 5200 Fragment Analyzer System. Cell lines and patient cancer specimens were tested. DNA from 56 formalin-fixed paraffin-embedded cancer specimens and matched normal tissue were extracted and CGE was performed. An automated computational algorithm for MSI status determination was also developed. Results: Using the fragment analyser, MSI status was found to be 100% concordant with the known MSI status of cell lines and was 86% and 87% concordant with immunohistochemistry (IHC) from patient cancer specimens using traditional assessment and our MSI scoring system, respectively, for MSI determination. The misclassification rate was mainly attributed to IHC, with only one (1.8%) sampling error attributed to CGE testing. CGE was also able to distinguish MSI-L from MSI-H and MSS, which is not possible with IHC. An MSI score based on total allelic variability that can accurately determine MSI status was also successfully developed. A significant reduction in cost compared with traditional fluorescent multiplex PCR and CGE was achieved with this technique. Conclusions: A simple, cost-effective and reliable method of determining MSI status and an MSI scoring system based on an automatic computational algorithm to determine MSI status, as well as degree of allelic instability in colorectal cancer, has been developed using the 5200 Fragment Analyzer System

    Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer:a systematic review and meta-analysis

    Get PDF
    BACKGROUND: The beneficial role of gut microbiota and bacterial metabolites, including short-chain fatty acids (SCFAs), is well recognized, although the available literature around their role in colorectal cancer (CRC) has been inconsistent. METHODS: We performed a systematic review and meta-analysis to examine the associations of fecal SCFA concentrations to the incidence and risk of CRC. Data extraction through Medline, Embase, and Web of Science was carried out from database conception to June 29, 2022. Predefined inclusion/exclusion criteria led to the selection of 17 case-control and six cross-sectional studies for quality assessment and analyses. Studies were categorized for CRC risk or incidence, and RevMan 5.4 was used to perform the meta-analyses. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated using a random-effects model. Studies lacking quantitation were included in qualitative analyses. RESULTS: Combined analysis of acetic, propionic, and butyric acid revealed significantly lower concentrations of these SCFAs in individuals with a high-risk of CRC (SMD = 2.02, 95% CI 0.31 to 3.74, P = 0.02). Additionally, CRC incidence was higher in individuals with lower levels of SCFAs (SMD = 0.45, 95% CI 0.19 to 0.72, P = 0.0009), compared to healthy individuals. Qualitative analyses identified 70.4% of studies reporting significantly lower concentrations of fecal acetic, propionic, butyric acid, or total SCFAs in those at higher risk of CRC, while 66.7% reported significantly lower concentrations of fecal acetic and butyric acid in CRC patients compared to healthy controls. CONCLUSIONS: Overall, lower fecal concentrations of the three major SCFAs are associated with higher risk of CRC and incidence of CRC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02529-4

    In vitro models of the liver : disease modeling, drug discovery and clinical applications

    Get PDF
    In vitro models of the liver have led to important insights into the pathogenesis of liver disease. These models are essential tools in the discovery and preclinical stages of drug development. The clinical application of these models is also emerging as a promising avenue for validating genetic target-matched treatments, in a precision medicine approach to treatment. Recent advances in ‘liver-on-a-chip’ technology and liver organoid research have opened up new opportunities for the functional and clinical use of organotypic in vitro models. This chapter focuses on the currently available in vitro liver models and the opportunities and limitations they present in the context of evaluating their use in disease modeling, drug discovery, and clinical application

    Association between microsatellite instability status and peri-operative release of circulating tumour cells in colorectal cancer

    Get PDF
    Microsatellite instability (MSI) in colorectal cancer (CRC) is a marker of immunogenicity and is associated with an increased abundance of tumour infiltrating lymphocytes (TILs). In this subgroup of colorectal cancer, it is unknown if these characteristics translate into a measurable difference in circulating tumour cell (CTC) release into peripheral circulation. This is the first study to compare MSI status with the prevalence of circulating CTCs in the peri-operative colorectal surgery setting. For this purpose, 20 patients who underwent CRC surgery with curative intent were enrolled in the study, and peripheral venous blood was collected at pre- (t1), intra- (t2), immediately post-operative (t3), and 14–16 h post-operative (t4) time points. Of these, one patient was excluded due to insufficient blood sample. CTCs were isolated from 19 patients using the IsofluxTM system, and the data were analysed using the STATA statistical package. CTC number was presented as the mean values, and comparisons were made using the Student t-test. There was a trend toward increased CTC presence in the MSI-high (H) CRC group, but this was not statistically significant. In addition, a Poisson regression was performed adjusting for stage (I-IV). This demonstrated no significant difference between the two MSI groups for pre-operative time point t1. However, time points t2, t3, and t4 were associated with increased CTC presence for MSI-H CRCs. In conclusion, there was a trend toward increased CTC release pre-, intra-, and post-operatively in MSI-H CRCs, but this was only statistically significant intra-operatively. When adjusting for stage, MSI-H was associated with an increase in CTC numbers intra-operatively and post-operatively, but not pre-operatively

    Rapidly Characterizing the Fast Dynamics of RNA Genetic Circuitry with Cell-Free Transcription Translation (TX-TL) Systems

    Get PDF
    RNA regulators are emerging as powerful tools to engineer synthetic genetic networks or rewire existing ones. A potential strength of RNA networks is that they may be able to propagate signals on time scales that are set by the fast degradation rates of RNAs. However, a current bottleneck to verifying this potential is the slow design-build-test cycle of evaluating these networks in vivo. Here, we adapt an Escherichia coli-based cell-free transcription-translation (TX-TL) system for rapidly prototyping RNA networks. We used this system to measure the response time of an RNA transcription cascade to be approximately five minutes per step of the cascade. We also show that this response time can be adjusted with temperature and regulator threshold tuning. Finally, we use TX-TL to prototype a new RNA network, an RNA single input module, and show that this network temporally stages the expression of two genes in vivo

    Harnessing liquid biopsies to guide immune checkpoint inhibitor therapy

    Get PDF
    Immunotherapy (IO), involving the use of immune checkpoint inhibition, achieves improved response-rates and significant disease-free survival for some cancer patients. Despite these beneficial effects, there is poor predictability of response and substantial rates of innate or acquired resistance, resulting in heterogeneous responses among patients. In addition, patients can develop life-threatening adverse events, and while these generally occur in patients that also show a tumor response, these outcomes are not always congruent. Therefore, predicting a response to IO is of paramount importance. Traditionally, tumor tissue analysis has been used for this purpose. However, minimally invasive liquid biopsies that monitor changes in blood or other bodily fluid markers are emerging as a promising cost-effective alternative. Traditional biomarkers have limitations mainly due to difficulty in repeatedly obtaining tumor tissue confounded also by the spatial and temporal heterogeneity of tumours. Liquid biopsy has the potential to circumvent tumor heterogeneity and to help identifying patients who may respond to IO, to monitor the treatment dynamically, as well as to unravel the mechanisms of relapse. We present here a review of the current status of molecular markers for the prediction and monitoring of IO response, focusing on the detection of these markers in liquid biopsies. With the emerging improvements in the field of liquid biopsy, this approach has the capacity to identify IO-eligible patients and provide clinically relevant information to assist with their ongoing disease management

    Health-related quality of life during chemoradiation in locally advanced rectal cancer : impacts and ethnic disparities

    Get PDF
    Aims: There is limited data on health-related quality of life (HRQoL) in locally advanced rectal cancer. We assessed HRQoL before, during and after neoadjuvant chemoradiation, correlated this to corresponding clinician-reported adverse events (CR-AEs) and explored disparities between patients of Asian ethnicity versus Caucasians. Correlation between HRQoL and treatment response was also assessed. Methods: A consecutive sample of patients was recruited. HRQoL was assessed with the EORTC QLQ-C30 before chemoradiation, week three of chemoradiation and one-week pre-surgery. Clinical variables including CR-AEs were recorded at these time-points. Patients self-reported socio-demographic variables. Treatment response was assessed by the tumour regression grade. HRQoL data were analysed with multilevel models. Results: Fifty-one patients were recruited. HRQoL completion rates were ≥86%. Cognitive and role functioning worsened significantly during treatment. Emotional, role and social functioning improved significantly at pre-surgery. Fatigue and nausea/vomiting worsened during treatment while fatigue, appetite loss, diarrhoea and financial difficulties improved from treatment to pre-surgery. Almost 30% of the cohort were Asian ethnicity. Differences were found in multiple HRQoL domains between Asians and Caucasians, with Asians faring worse. Significant differences were evident in physical, role and cognitive functioning, and in seven out of the 8 symptom scales. The correlation between patient-reported outcomes and clinician-reported outcomes was weak, with diarrhoea having the strongest correlation (r = 0.58). Vomiting during treatment correlated with poor response, whilst baseline constipation correlated with good response. Conclusion: Chemoradiation for locally advanced rectal cancer affects multiple HRQoL domains. Our findings highlight the importance of psychological aspects of treatment. Significant differences were identified between the Asian and Caucasian populations, with Asians consistently performing worse. Poor correlations between patient and clinician reporting strongly support the inclusion of patient-reported outcomes in clinical studies. HRQoL domains of vomiting and constipation are potential biomarkers of treatment response

    Circulating tumour cell associated microRNA profiles change during chemoradiation and are predictive of response in locally advanced rectal cancer

    Get PDF
    Locally advanced rectal cancer (LARC) has traditionally been treated with trimodality therapy consisting of neoadjuvant radiation +/− chemotherapy, surgery, and adjuvant chemotherapy. There is currently a clinical need for biomarkers to predict treatment response and outcomes, especially during neoadjuvant therapy. Liquid biopsies in the form of circulating tumour cells (CTCs) and circulating nucleic acids in particular microRNAs (miRNA) are novel, the latter also being highly stable and clinically relevant regulators of disease. We studied a prospective cohort of 52 patients with LARC, and obtained samples at baseline, during treatment, and post-treatment. We enumerated CTCs during chemoradiation at these three time-points, using the IsofluxTM (Fluxion Biosciences Inc., Alameda, CA, USA) CTC Isolation and detection platform. We then subjected the isolated CTCs to miRNA expression analyses, using a panel of 106 miRNA candidates. We identified CTCs in 73% of patients at baseline; numbers fell and miRNA expression profiles also changed during treatment. Between baseline and during treatment (week 3) time-points, three microRNAs (hsa-miR-95, hsa-miR-10a, and hsa-miR-16-1*) were highly differentially expressed. Importantly, hsa-miR-19b-3p and hsa-miR-483-5p were found to correlate with good response to treatment. The latter (hsa-miR-483-5p) was also found to be differentially expressed between good responders and poor responders. These miRNAs represent potential predictive biomarkers, and thus a potential miRNA-based treatment strategy. In this study, we demonstrate that CTCs are present and can be isolated in the non-metastatic early-stage cancer setting, and their associated miRNA profiles can potentially be utilized to predict treatment response

    Self-oligomerization Regulates Stability of Survival Motor Neuron Protein Isoforms by Sequestering an SCF\u3csup\u3eSlmb\u3c/sup\u3e Degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thrombospondin-4 </it>(<it>THBS4</it>) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of <it>THBS4 </it>expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter.</p> <p>Methods</p> <p>Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of <it>THBS4 </it>transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon.</p> <p>Results</p> <p><it>THBS4 </it>expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and <it>THBS4 </it>methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high <it>THBS4 </it>methylation, but the correlation was not significant. <it>THBS4 </it>methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the colon.</p> <p>Conclusions</p> <p><it>THBS4 </it>shows increased methylation in colorectal cancer, but this is not strongly associated with altered gene expression, either because methylation has not always reached a critical level or because other factors influence <it>THBS4 </it>expression. <it>THBS4 </it>may act as a tumour suppressor gene, demonstrated by its suppression of tumour colony formation <it>in vitro</it>. <it>THBS4 </it>methylation is detectable in normal colonic mucosa and its level may be a biomarker for the occurrence of adenomas and carcinoma.</p
    • …
    corecore