1,223 research outputs found

    Differential gene expression patterns in cyclooxygenase-1 and cyclooxygenase-2 deficient mouse brain

    Get PDF
    BACKGROUND: Cyclooxygenase (COX)-1 and COX-2 produce prostanoids from arachidonic acid and are thought to have important yet distinct roles in normal brain function. Deletion of COX-1 or COX-2 results in profound differences both in brain levels of prostaglandin E(2 )and in activation of the transcription factor nuclear factor-κB, suggesting that COX-1 and COX-2 play distinct roles in brain arachidonic acid metabolism and regulation of gene expression. To further elucidate the role of COX isoforms in the regulation of the brain transcriptome, microarray analysis of gene expression in the cerebral cortex and hippocampus of mice deficient in COX-1 (COX-1(-/-)) or COX-2 (COX-2(-/-)) was performed. RESULTS: A majority (>93%) of the differentially expressed genes in both the cortex and hippocampus were altered in one COX isoform knockout mouse but not the other. The major gene function affected in all genotype comparisons was 'transcriptional regulation'. Distinct biologic and metabolic pathways that were altered in COX(-/- )mice included β oxidation, methionine metabolism, janus kinase signaling, and GABAergic neurotransmission. CONCLUSION: Our findings suggest that COX-1 and COX-2 differentially modulate brain gene expression. Because certain anti-inflammatory and analgesic treatments are based on inhibition of COX activity, the specific alterations observed in this study further our understanding of the relationship of COX-1 and COX-2 with signaling pathways in brain and of the therapeutic and toxicologic consequences of COX inhibition

    Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence

    Get PDF
    Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1- dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease

    Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to current chemotherapeutic agents is a major cause of therapy failure in ovarian cancer patients, but the exact mechanisms leading to the development of drug resistance remain unclear.</p> <p>Methods</p> <p>To better understand mechanisms of drug resistance, and possibly identify novel targets for therapy, we generated a series of drug resistant ovarian cancer cell lines through repeated exposure to three chemotherapeutic drugs (cisplatin, doxorubicin, or paclitaxel), and identified changes in gene expression patterns using Illumina whole-genome expression microarrays. Validation of selected genes was performed by RT-PCR and immunoblotting. Pathway enrichment analysis using the KEGG, GO, and Reactome databases was performed to identify pathways that may be important in each drug resistance phenotype.</p> <p>Results</p> <p>A total of 845 genes (p < 0.01) were found altered in at least one drug resistance phenotype when compared to the parental, drug sensitive cell line. Focusing on each resistance phenotype individually, we identified 460, 366, and 337 genes significantly altered in cells resistant to cisplatin, doxorubicin, and paclitaxel, respectively. Of the 845 genes found altered, only 62 genes were simultaneously altered in all three resistance phenotypes. Using pathway analysis, we found many pathways enriched for each resistance phenotype, but some dominant pathways emerged. The dominant pathways included signaling from the cell surface and cell movement for cisplatin resistance, proteasome regulation and steroid biosynthesis for doxorubicin resistance, and control of translation and oxidative stress for paclitaxel resistance.</p> <p>Conclusions</p> <p>Ovarian cancer cells develop drug resistance through different pathways depending on the drug used in the generation of chemoresistance. A better understanding of these mechanisms may lead to the development of novel strategies to circumvent the problem of drug resistance.</p

    PubMatrix: a tool for multiplex literature mining

    Get PDF
    BACKGROUND: Molecular experiments using multiplex strategies such as cDNA microarrays or proteomic approaches generate large datasets requiring biological interpretation. Text based data mining tools have recently been developed to query large biological datasets of this type of data. PubMatrix is a web-based tool that allows simple text based mining of the NCBI literature search service PubMed using any two lists of keywords terms, resulting in a frequency matrix of term co-occurrence. RESULTS: For example, a simple term selection procedure allows automatic pair-wise comparisons of approximately 1–100 search terms versus approximately 1–10 modifier terms, resulting in up to 1,000 pair wise comparisons. The matrix table of pair-wise comparisons can then be surveyed, queried individually, and archived. Lists of keywords can include any terms currently capable of being searched in PubMed. In the context of cDNA microarray studies, this may be used for the annotation of gene lists from clusters of genes that are expressed coordinately. An associated PubMatrix public archive provides previous searches using common useful lists of keyword terms. CONCLUSIONS: In this way, lists of terms, such as gene names, or functional assignments can be assigned genetic, biological, or clinical relevance in a rapid flexible systematic fashion

    Cortical gene transcription response patterns to water maze training in aged mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hippocampus mediates the acquisition of spatial memory, but the memory trace is eventually transferred to the cortex. We have investigated transcriptional activation of pathways related to cognitive function in the cortex of the aged mouse by analyzing gene expression following water maze training.</p> <p>Results</p> <p>We identified genes that were differentially responsive in aged mice with accurate spatial performance during probe trials or repeated swimming sessions, relative to home cage conditions. Effective learners exhibited significantly greater activation of several pathways, such as the mitogen-activated protein kinase and insulin receptor signaling pathways, relative to swimmers. The genes encoding activity-related cytoskeletal protein (Arc) and brain-derived neurotrophic factor (BDNF) were upregulated in proficient learners, relative to swimmers and home cage controls, while the gene encoding Rho GTPase activating protein 32 (GRIT) was downregulated. We explored the regulation of Arc, BDNF, and GRIT expression in greater morphological detail using in situ hybridization. Recall during probe trials enhanced Arc expression across multiple cortical regions involved in the cognitive component of water maze learning, while BDNF expression was more homogeneously upregulated across cortical regions involved in the associational and sensorimotor aspects of water maze training. In contrast, levels of GRIT expression were uniformly reduced across all cortical regions examined.</p> <p>Conclusions</p> <p>These results suggest that cortical gene transcription is responsive to learning in aged mice that exhibit behavioral proficiency, and support a distributed hypothesis of memory storage across multiple cortical compartments.</p

    Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability

    Get PDF
    BACKGROUND: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The effective correlation of observed changes in gene expression with shared transcription regulatory elements remains difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. RESULTS: In order to investigate the relative contribution of gene transcription and changes in mRNA stability regulation to standard analyses of gene expression, we used two distinct microarray methods which individually measure nuclear gene transcription and changes in polyA mRNA gene expression. Gene expression profiles were obtained from both polyA mRNA (whole-cell) and nuclear run-on (newly transcribed) RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin. Comparative analysis revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in polyA mRNA in this system, as inferred by the absence of any corresponding regulation of nuclear gene transcription activity for these groups of genes. Genes which displayed dramatic elevations in both mRNA and nuclear run-on RNA were shown to be inhibited by Actinomycin D (ActD) pre-treatment of cells while large numbers of genes regulated only through altered mRNA turnover (both up and down) were ActD-resistant. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. CONCLUSION: We propose that regulation of mRNA stability contributes significantly to the observed changes in gene expression in response to external stimuli, as measured by high throughput systems

    Naïve rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses

    Get PDF
    Background: Un-engineered human and rat umbilical cord matrix stem cells (rUCMSC) attenuate growth of several types of tumors in mice and rats. However, the mechanism by which UCMSC attenuate tumor growth has not been studied rigorously. Methods- The possible mechanisms of tumor growth attenuation by rUCMSC were studied using orthotopic Mat B III rat mammary tumor grafts in female F344 rats. Tumor-infiltrating leukocytes were identified and quantified by immunohistochemical image analysis. Potential cytokines involved in lymphocyte infiltration in the tumors were determined by microarray and Western blot analysis. The Boyden chamber migration assay was performed for the functional analysis of identified cytokines. Results: rUCMSC markedly attenuated the tumor growth; this attenuation was accompanied by considerable lymphocyte infiltration. Immunohistochemical analysis revealed that the majority of infiltrating lymphocytes in the rUCMSC-treated tumors were CD3+ T cells. In addition, treatment with rUCMSC significantly increased infiltration of CD 8+ and CD4+ T cells and NK cells throughout tumor tissue. CD68+ monocytes/macrophages and FoxP3+ regulatory T cells were scarcely observed, only in the tumors of the PBS control group. Microarray analysis of rUCMSC identified that monocyte chemotactic protein (MCP)-1 is involved in rUCMSCinduced lymphocyte infiltration in the tumor tissues. Discussion: These results suggest that naïve rUCMSC attenuated mammary tumor growth at least in part by enhancing host anti-tumor immune responses. Thus, naïve UCMSC can be used as powerful therapeutic cells for breast cancer treatment, and MCP-1 may be a key molecule to enhance the effect of UCMSC at the tumor site

    Combination Therapy of Brain Natriuretic Peptide and Sildenafil Attenuates Pulmonary Hypertension in Rats [abstract]

    Get PDF
    Abstract only availableFaculty Mentor: Dr. Vincent DeMarco, Child HealthBackground: Pulmonary arterial hypertension (PAH) is a lethal disease characterized by changes in pulmonary vascular structure and function. We tested the hypothesis that Sildenafil, a phosphodiesterase 5 inhibitor, and brain natriuretic peptide (BNP), a guanosine cyclase stimulator, in combination synergistically attenuates PAH when compared to individual therapy in rats through different mechanisms to increase cGMP while minimizing systemic side effects. Methods: Adult male Sprague-Dawley rats were subcutaneously injected with monocrotaline (n=30, 50 mg/kg). After approximately 5 weeks, rats were anesthetized and instrumented to measure systemic pressure (MAP) and right ventricular systolic pressure (RVSP) during infusions of vehicle solution (n=5), intravenous Sildenafil (84 mg/kg/min; n=8), and intravenous BNP (100 ng/kg/min; n=7) alone and a combination of Sildenafil and BNP (n=10). Results: Sildenafil alone decreased RVSP (-17 ±13.2 mmHg) and had a relatively minimal effect on MAP (-4±9.9 mmHg). BNP decreased RVSP (-19±14 mmHg) but also significantly effected MAP (-11±15.3mmHg). Combination therapy with Sildenafil and BNP lowered RVSP (-20±18.7 mmHg), however it also induced the greatest systemic hypotensive effect (MAP = -19±9.9 mmHg). Conclusion: The combination of Sildenafil and BNP, at these doses, significantly attenuates monocrotaline-induced pulmonary hypertension. However, compared with individual treatment, there is no significant difference in effect on RVSP. Furthermore, additive systemic side effects are too significant to consider combination therapy safe. With a different dosing regime, this combination is a potentially viable option in the treatment of patients with PAH

    Nontelomeric TRF2-REST Interaction Modulates Neuronal Gene Silencing and Fate of Tumor and Stem Cells

    Get PDF
    SummaryRemoval of TRF2, a telomere shelterin protein, recapitulates key aspects of telomere attrition including the DNA-damage response and cell-cycle arrest [1]. Distinct from the response of proliferating cells to loss of TRF2 [2, 3], in rodent noncycling cells, TRF2 inhibition promotes differentiation and growth [4, 5]. However, the mechanism that couples telomere gene-silencing features [6–8] to differentiation programs has yet to be elucidated. Here we describe an extratelomeric function of TRF2 in the regulation of neuronal genes mediated by the interaction of TRF2 with repressor element 1-silencing transcription factor (REST), a master repressor of gene networks devoted to neuronal functions [9–12]. TRF2-REST complexes are readily detected by coimmunoprecipitation assays and are localized to aggregated PML-nuclear bodies in undifferentiated pluripotent human NTera2 stem cells. Inhibition of TRF2, either by a dominant-negative mutant or by RNA interference, dissociates TRF2-REST complexes resulting in ubiquitin-proteasomal degradation of REST. Consequentially, REST-targeted neural genes (L1CAM, β3-tubulin, synaptophysin, and others) are derepressed, resulting in acquisition of neuronal phenotypes. Notably, selective damage to telomeres without affecting TRF2 levels causes neither REST degradation nor cell differentiation. Thus, in addition to protecting telomeres, TRF2 possesses a novel role in stabilization of REST thereby controlling neural tumor and stem cell fate

    Microarray and pathway analysis reveals decreased CDC25A and increased CDC42 associated with slow growth of BCL2 overexpressing immortalized breast cell line

    Get PDF
    Bcl-2 is an anti-apoptotic protein that is frequently overex-pressed in cancer cells but its role in carcinogenesis is not clear. We are interested in how Bcl-2 expression affects non-cancerous breast cells and its role in the cell cycle. We prepared an MCF10A breast epithelial cell line that stably overexpressed Bcl-2. We analyzed the cells by flow cytometry after synchronization, and used cDNA microarrays with quantitative reverse-transcription PCR (qRTPCR) to determine differences in gene expression. The microarray data was subjected to two pathway analysis tools, parametric analysis of gene set enrichment (PAGE) and ingenuity pathway analysis (IPA), and western analysis was carried out to determine the correlation between mRNA and protein levels. The MCF10A/Bcl-2 cells exhibited a slow-growth phenotype compared to control MCF10A/Neo cells that we attributed to a slowing of the G1-S cell cycle transition. A total of 363 genes were differentially expressed by at least two-fold, 307 upregulated and 56 downregulated. PAGE identified 22 significantly changed gene sets. The highest ranked network of genes identified by IPA contained 24 genes. Genes that were chosen for further analysis were confirmed by qRT-PCR, however, the western analysis did not always confirm differential expression of the proteins. Downregulation of the phosphatase CDC25A could solely be responsible for the slow growth pheno-type in MCF10A/Bcl-2 cells. Increased levels of GTPase Cdc42 could be adding to this effect. PAGE and IPA are valuable tools for microarray analysis, but protein expression results do not always follow mRNA expression results. Originally published Cell Cycle, Vol. 7, No. 19, Oct. 200
    corecore