25 research outputs found

    ACC/AHA/SCAI/AMAā€“Convened PCPI/NCQA 2013 Performance Measures for Adults Undergoing Percutaneous Coronary Intervention A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Associationā€“Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance

    Get PDF
    Journal of the American College of Cardiology Ɠ 2014 by the American College of Cardiology Foundation, American Heart Association, Inc., American Medical Association, and National Committee for Quality Assurance Published by Elsevier Inc. Vol. 63, No. 7, 2014 ISSN 0735-1097/$36.00 http://dx.doi.org/10.1016/j.jacc.2013.12.003 PERFORMANCE MEASURES ACC/AHA/SCAI/AMAā€“Convened PCPI/NCQA 2013 Performance Measures for Adults Undergoing Percutaneous Coronary Intervention A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Associationā€“Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance Developed in Collaboration With the American Association of Cardiovascular and Pulmonary Rehabilitation and Mended Hearts Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and Mended Hearts WRITING COMMITTEE MEMBERS Brahmajee K. Nallamothu, MD, MPH, FACC, FAHA, Co-Chair*; Carl L. Tommaso, MD, FACC, FAHA, FSCAI, Co-Chairy; H. Vernon Anderson, MD, FACC, FAHA, FSCAI*; Jeffrey L. Anderson, MD, FACC, FAHA, MACP*; Joseph C. Cleveland, J R , MDz; R. Adams Dudley, MD, MBA; Peter Louis Duffy, MD, MMM, FACC, FSCAIy; David P. Faxon, MD, FACC, FAHA*; Hitinder S. Gurm, MD, FACC; Lawrence A. Hamilton, Neil C. Jensen, MHA, MBA; Richard A. Josephson, MD, MS, FACC, FAHA, FAACVPRx; David J. Malenka, MD, FACC, FAHA*; Calin V. Maniu, MD, FACC, FAHA, FSCAIy; Kevin W. McCabe, MD; James D. Mortimer, Manesh R. Patel, MD, FACC*; Stephen D. Persell, MD, MPH; John S. Rumsfeld, MD, PhD, FACC, FAHAjj; Kendrick A. Shunk, MD, PhD, FACC, FAHA, FSCAI*; Sidney C. Smith, J R , MD, FACC, FAHA, FACP{; Stephen J. Stanko, MBA, BA, AA#; Brook Watts, MD, MS *ACC/AHA Representative. ySociety of Cardiovascular Angiography and Interventions Representative. zSociety of Thoracic Surgeons Representative. xAmerican Association of Cardiovascular and Pulmonary Rehabilitation Representative. kACC/AHA Task Force on Performance Measures Liaison. {National Heart Lung and Blood Institute Representative. #Mended Hearts Representative. The measure speciļ¬cations were approved by the American College of Cardiology Board of Trustees, American Heart Association Science Advisory and Coordinating Committee, in January 2013 and the American Medical Associationā€“Physician Consortium for Performance Improvement in February 2013. This document was approved by the American College of Cardiology Board of Trustees and the American Heart Association Science Advisory and Coordinating Committee in October 2013, and the Society of Cardiovascular Angiography and Interventions in December 2013. The American College of Cardiology requests that this document be cited as follows: Nallamothu BK, Tommaso CL, Anderson HV, Anderson JL, Cleveland JC, Dudley RA, Duffy PL, Faxon DP, Gurm HS, Hamilton LA, Jensen NC, Josephson RA, Malenka DJ, Maniu CV, McCabe KW, Mortimer JD, Patel MR, Persell SD, Rumsfeld JS, Shunk KA, Smith SC, Stanko SJ, Watts B. ACC/AHA/SCAI/AMAā€“Convened PCPI/NCQA 2013 perfor- mance measures for adults undergoing percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures, the Society for Cardiovascular Angiography and Interventions, the American Medical Associationā€“Convened Physician Consortium for Performance Improvement, and the National Committee for Quality Assurance. J Am Coll Cardiol 2014;63:722ā€“45. This article has been copublished in Circulation. Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org) and the American Heart Asso- ciation (http://my.americanheart.org). For copies of this document, please contact Elsevier Inc. Reprint Department, fax (212) 633-3820, e-mail [email protected]. Permissions: Multiple copies, modiļ¬cation, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American College of Cardiology. Requests may be completed online via the Elsevier site (http://www.elsevier.com/authors/obtaining- permission-to-re-use-elsevier-material). This Physician Performance Measurement Set (PPMS) and related data speciļ¬cations were developed by the Physician Consortium for Performance Improvement (the Consortium), including the American College of Cardiology (ACC), the American Heart Association (AHA), and the American Medical Association (AMA), to facilitate quality-improvement activities by physicians. The performance measures contained in this PPMS are not clinical guidelines, do not establish a standard of medical care, and have not been tested for all potential applications. Although copyrighted, they can be reproduced and distributed, without modiļ¬cation, for noncommercial purposesdfor example, use by health care pro

    Disease Detection by Ultrasensitive Quantification of Microdosed Synthetic Urinary Biomarkers

    Get PDF
    The delivery of exogenous agents can enable noninvasive disease monitoring, but existing low-dose approaches require complex infrastructure. In this paper, we describe a microdose-scale injectable formulation of nanoparticles that interrogate the activity of thrombin, a key regulator of clotting, and produce urinary reporters of disease state. We establish a customized single molecule detection assay that enables urinary discrimination of thromboembolic disease in mice using doses of the nanoparticulate diagnostic agents that fall under regulatory guidelines for ā€œmicrodosing.ā€National Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award F32CA159496-02)Burroughs Wellcome Fund (Career Award at the Scientific Interface)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051)David H. Koch Institute for Integrative Cancer Research at MIT (Frontier Research Program

    De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2

    Get PDF
    We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo hACE2 decoys to neutralize SARS-CoV-2. The best decoy, CTC-445.2, binds with low nanomolar affinity and high specificity to the RBD of the spike protein. Cryo-EM shows that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, shows ~10-fold improvement in binding. CTC-445.2d potently neutralizes SARS-CoV-2 infection of cells in vitro and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge

    Integrating plant physiology into simulation of fire behavior and effects

    Get PDF
    Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future

    De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2

    Get PDF
    We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo hACE2 decoys to neutralize SARS-CoV-2. The best decoy, CTC-445.2, binds with low nanomolar affinity and high specificity to the RBD of the spike protein. Cryo-EM shows that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, shows ~10-fold improvement in binding. CTC-445.2d potently neutralizes SARS-CoV-2 infection of cells in vitro and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge

    Clinical use of convalescent plasma in the COVID-19 pandemic: a transfusion-focussed gap analysis with recommendations for future research priorities

    No full text
    Background and objectives Use of convalescent plasma for coronavirus disease 2019 (COVID-19) treatment has gained interest worldwide. However, there is lack of evidence on its dosing, safety and effectiveness. Until data from clinical studies are available to provide solid evidence for worldwide applicable guidelines, there is a need to provide guidance to the transfusion community and researchers on this emergent therapeutic option. This paper aims to identify existing key gaps in current knowledge in the clinical application of COVID-19 convalescent plasma (CCP). Materials and methods The International Society of Blood Transfusion (ISBT) initiated a multidisciplinary working group with worldwide representation from all six continents with the aim of reviewing existing practices on CCP use from donor, product and patient perspectives. A subgroup of clinical transfusion professionals was formed to draft a document for CCP clinical application to identify the gaps in knowledge in existing literature. Results Gaps in knowledge were identified in the following main domains: study design, patient eligibility, CCP dose, frequency and timing of CCP administration, parameters to assess response to CCP treatment and long-term outcome, adverse events and CCP application in less-resourced countries as well as in paediatrics and neonates. Conclusion This paper outlines a framework of gaps in the knowledge of clinical deployment of CPP that were identified as being most relevant. Studies to address the identified gaps are required to provide better evidence on the effectiveness and safety of CCP use
    corecore