3,303 research outputs found
Planetary Companions Around Two Solar Type Stars: HD 195019 and HD 217107
We have enlarged the sample of stars in the planet search at Lick
Observatory. Doppler measurements of 82 new stars observed at Lick Observatory,
with additional velocities from Keck Observatory, have revealed two new planet
candidates.
The G3V/IV star, HD 195019, exhibits Keplerian velocity variations with a
period of 18.27 d, an orbital eccentricity of 0.03 +/- 0.03, and M sin i = 3.51
M_Jup. Based on a measurement of Ca II H&K emission, this star is
chromospherically inactive. We estimate the metallicity of HD 195019 to be
approximately solar from ubvy photometry.
The second planet candidate was detected around HD 217107, a G7V star. This
star exhibits a 7.12 d Keplerian period with eccentricity 0.14 +/- 0.05 and M
sin i = 1.27 M_Jup. HD 217107 is also chromospherically inactive. The
photometric metallicity is found to be [Fe/H] = +0.29 +/- 0.1 dex. Given the
relatively short orbital period, the absence of tidal spin-up of HD 217107
provides a theoretical constraint on the upper limit of the companion mass of <
11 M_Jup.Comment: 15 pages, plus 6 figures. To appear in Jan 1999 PAS
Expression of squid iridescence depends on environmental luminance and peripheral ganglion control
Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 217 (2014):850-858, doi:10.1242/âjeb.091884.Squids display impressive changes in body coloration that are afforded by two types of dynamic skin elements: structural iridophores (which produce iridescence) and pigmented chromatophores. Both color elements are neurally controlled, but nothing is known about the iridescence circuit, or the environmental cues, that elicit iridescence expression. To tackle this knowledge gap, we performed denervation, electrical stimulation and behavioral experiments using the long-fin squid, Doryteuthis pealeii. We show that while the pigmentary and iridescence circuits originate in the brain, they are wired differently in the periphery: (i) the iridescence signals are routed through a peripheral center called the stellate ganglion and (ii) the iridescence motorneurons likely originate within this ganglion (as revealed by nerve fluorescence dye fills). Cutting the inputs to the stellate ganglion that descend from the brain shifts highly reflective iridophores into a transparent state. Taken together, these findings suggest that although brain commands are necessary for expression of iridescence, integration with peripheral information in the stellate ganglion could modulate the final output. We also demonstrate that squids change their iridescence brightness in response to environmental luminance; such changes are robust but slow (minutes to hours). The squid's ability to alter its iridescence levels may improve camouflage under different lighting intensities.This research was supported by the ONR Basic Research Challenge grant no. N00014-10-1-0989 and by the AFOSR grant FA9950090346.2015-03-1
Is there an integrative center in the vertebrate brain-stem? A robotic evaluation of a model of the reticular formation viewed as an action selection device
Neurobehavioral data from intact, decerebrate, and neonatal rats, suggests that the reticular formation provides
a brainstem substrate for action selection in the vertebrate central nervous system. In this article, Kilmer,
McCulloch and Blumâs (1969, 1997) landmark reticular formation model is described and re-evaluated, both in
simulation and, for the first time, as a mobile robot controller. Particular model configurations are found to
provide effective action selection mechanisms in a robot survival task using either simulated or physical robots.
The modelâs competence is dependent on the organization of afferents from model sensory systems, and a genetic
algorithm search identified a class of afferent configurations which have long survival times. The results support
our proposal that the reticular formation evolved to provide effective arbitration between innate behaviors
and, with the forebrain basal ganglia, may constitute the integrative, âcentrencephalicâ core of vertebrate brain
architecture. Additionally, the results demonstrate that the Kilmer et al. model provides an alternative form of
robot controller to those usually considered in the adaptive behavior literature
The Clustering of Extremely Red Objects
We measure the clustering of Extremely Red Objects (EROs) in ~8 deg^2 of the
NOAO Deep Wide Field Survey Bo\"otes field in order to establish robust links
between ERO z~1.2 and local galaxy z<0.1 populations. Three different color
selection criteria from the literature are analyzed to assess the consequences
of using different criteria for selecting EROs. Specifically, our samples are
(R-K_s)>5.0 (28,724 galaxies), (I-K_s)>4.0 (22,451 galaxies) and (I-[3.6])>5.0
(64,370 galaxies). Magnitude-limited samples show the correlation length (r_0)
to increase for more luminous EROs, implying a correlation with stellar mass.
We can separate star-forming and passive ERO populations using the (K_s-[24])
and ([3.6]-[24]) colors to K_s=18.4 and [3.6]=17.5, respectively. Star-forming
and passive EROs in magnitude limited samples have different clustering
properties and host dark halo masses, and cannot be simply understood as a
single population. Based on the clustering, we find that bright passive EROs
are the likely progenitors of >4L^* elliptical galaxies. Bright EROs with
ongoing star formation were found to occupy denser environments than
star-forming galaxies in the local Universe, making these the likely
progenitors of >L^* local ellipticals. This suggests that the progenitors of
massive >4L^* local ellipticals had stopped forming stars by z>1.2, but that
the progenitors of less massive ellipticals (down to L^*) can still show
significant star formation at this epoch.Comment: 19 pages, 16 figures, 4 tables, Accepted to ApJ 27th November 201
Recommended from our members
Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30 kyr
The Southern Ocean is increasingly recognized as a key player in the general ocean thermohaline circulation and the global climate system during glacialâinterglacial transitions. In particular, the advection of Southern Ocean intermediate waters (SOIW), like Antarctic Intermediate Water and Sub-Antarctic Mode Water, to the Eastern Equatorial Pacific (EEP), through a so-called âoceanic tunnellingâ mechanism, is an important means for rapid transfer of climatic signals (such as heat, fresh water, salt, and chemical species) from high-to-low latitudes. However, information on how intermediate water advection rates changed in the past, and particularly during deglaciations, is fragmentary. We present new results for Nd isotopes (ΔNd) in cleaned foraminifera shells (Neogloboquadrina dutertrei) for the last 30 kyr at ODP Site 1240 in the EEP. N. dutertrei preferentially dwells in the lower thermocline, at the core of the Equatorial Undercurrent (EUC), and the ΔNd variability over time provides a record of the changes in the ΔNd of the EUC. Through mixing models we show that the EUC record is primarily controlled by changes in the volume transport of intermediate waters and not by Southern Ocean ΔNd changes. Southern Ocean signals in the EUC are stronger during colder intervals (Younger Dryas, last glacial maximum and Heinrich stadials 1 and 2), in agreement with tropical Atlantic intermediate water records. In addition, covariations between N. dutertrei ÎŽ13C, molecular biomarkers, and diatom productivity at Site 1240 confirm the intermediate water route as an important mechanism for the transfer of climate signals from high-to-low latitudes. Changes in the SOIW chemistry during the deglaciation are likely linked to the upwelling of âoldâ deep waters in the Southern Ocean and subsequent export as intermediate waters, which are coeval with the atmospheric CO2 rise. Moreover, a comparison of multiple proxy records for the last 30 kyr indicates a latitudinal shift and/or a change in the convection depth of intermediate waters in the Southern Ocean prior to the onset of the deglaciation
Six New Planets from the Keck Precision Velocity Survey
We report results of a search for planets around 500 main sequence stars
using the Keck high resolution spectrometer which has provided Doppler
precision of 3 m/s during the past 3 yr. We report 6 new strong planet
candidates having complete Keplerian orbits, with periods ranging from 24 d to
3 yr. We also provide updated orbital parameters for 4 previously announced
planets. Four of the six newly discovered planets have minimum Msini masses
less than 2 Mjup, while the remaining two have Msini 5 Mjup. The
distribution of planetary masses continues to exhibit a rise toward lower
masses. The orbital eccentricities of the new planets range from 0.12 to 0.71
which also continues the ubiquity of high eccentricities. All 18 known
extrasolar planets orbiting beyond 0.2 AU have eccentricities greater than
0.1. The current limiting Doppler precision of the Keck Doppler survey is
3 m/s per observation as determined from observations of both stable stars and
residuals to Keplerian fits.Comment: 50 pages with 17 figure
Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems
Thermodynamic properties are presented for four magnetic impurity models
describing delocalized fermions scattering from a localized orbital at an
energy-dependent rate which vanishes precisely at the Fermi
level, . Specifically, it is assumed that for small ,
with . The cases and
describe dilute magnetic impurities in unconventional superconductors, ``flux
phases'' of the two-dimensional electron gas, and zero-gap semiconductors. For
the nondegenerate Anderson model, the depression of the low-energy scattering
rate suppresses mixed valence in favor of local-moment behavior, and leads to a
marked reduction in the exchange coupling on entry to the local-moment regime,
with a consequent narrowing of the range of parameters within which the
impurity spin becomes Kondo-screened. The relationship between the Anderson
model and the exactly screened Kondo model with power-law exchange is examined.
The intermediate-coupling fixed point identified in the latter model by Withoff
and Fradkin (WF) has clear signatures in the thermodynamic properties and in
the local magnetic response of the impurity. The underscreened,
impurity-spin-one Kondo model and the overscreened, two-channel Kondo model
both exhibit a conditionally stable intermediate-coupling fixed point in
addition to unstable fixed points of the WF type. In all four models, the
presence or absence of particle-hole symmetry plays a crucial role.Comment: 44 two-column REVTex pages, 31 epsf-embedded EPS figures. MINOR
formatting changes. To appear in Phys. Rev.
Use of Therapeutic Drug Monitoring, Electronic Health Record Data, and Pharmacokinetic Modeling to Determine the Therapeutic Index of Phenytoin and Lamotrigine
Defining a drug's therapeutic index (TI) is important for patient safety and regulating the development of generic drugs. For many drugs, the TI is unknown. A systematic approach was developed to characterize the TI of a drug using therapeutic drug monitoring and electronic health record (EHR) data with pharmacokinetic (PK) modeling. This approach was first tested on phenytoin, which has a known TI, and then applied to lamotrigine, which lacks a defined TI
Carnegie Supernova Project-II: Extending the Near-Infrared Hubble Diagram for Type Ia Supernovae to
The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year
program to obtain optical and near-infrared observations of a "Cosmology"
sample of Type Ia supernovae located in the smooth Hubble flow (). Light curves were also obtained of a "Physics"
sample composed of 90 nearby Type Ia supernovae at selected for
near-infrared spectroscopic time-series observations. The primary emphasis of
the CSP-II is to use the combination of optical and near-infrared photometry to
achieve a distance precision of better than 5%. In this paper, details of the
supernova sample, the observational strategy, and the characteristics of the
photometric data are provided. In a companion paper, the near-infrared
spectroscopy component of the project is presented.Comment: 43 pages, 10 figures, accepted for publication in PAS
Recommended from our members
Francisella tularensis Transmission by Solid Organ Transplantation, 20171.
In July 2017, fever and sepsis developed in 3 recipients of solid organs (1 heart and 2 kidneys) from a common donor in the United States; 1 of the kidney recipients died. Tularemia was suspected only after blood cultures from the surviving kidney recipient grew Francisella species. The organ donor, a middle-aged man from the southwestern United States, had been hospitalized for acute alcohol withdrawal syndrome, pneumonia, and multiorgan failure. F. tularensis subsp. tularensis (clade A2) was cultured from archived spleen tissue from the donor and blood from both kidney recipients. Whole-genome multilocus sequence typing indicated that the isolated strains were indistinguishable. The heart recipient remained seronegative with negative blood cultures but had been receiving antimicrobial drugs for a medical device infection before transplant. Two lagomorph carcasses collected near the donor's residence were positive by PCR for F. tularensis subsp. tularensis (clade A2). This investigation documents F. tularensis transmission by solid organ transplantation
- âŠ