64 research outputs found

    Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Get PDF
    AbstractPyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP) to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs). Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5). In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect). Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time

    Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis

    Get PDF
    The pathogenesis of rheumatoid arthritis (RA) and osteoarthritis (OA) remains obscure, although angiogenesis appears to play an important role. We recently confirmed an overexpression of two angiogenic factors, namely vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF), by the lining and stromal cells of the synovium in both conditions. Because hypoxia inducible factor (HIF)-1α and HIF-2α are essential in regulating transcription of the VEGF gene, active participation of HIF-α molecules in the pathogenesis of these arthritides is anticipated. We investigated the immunohistochemical expression of HIF-1α and HIF-2α in the synovium of 22 patients with RA, 34 patients with OA and 22 'normal' nonarthritic individuals, in relation to VEGF, VEGF/KDR (kinase insert domain protein receptor) vascular activation, PD-ECGF and bcl-2. A significant cytoplasmic and nuclear overexpression of HIF-1α and HIF-2α was noted in the synovial lining and stromal cells of both diseases relative to normal. Overexpression of HIF-αs was related to high microvessel density, high PD-ECGF expression and high VEGF/KDR receptor activation, suggesting HIF-α-dependent synovial angiogenesis in OA. By contrast, the activation of the angiogenic VEGF/KDR pathway was persistently increased in RA, as indeed was microvessel density and the expression of PD-ECGF, irrespective of the extent of HIF-α expression, indicating a cytokine-dependent angiogenesis. In all cases, the VEGF/KDR vascular activation was significantly lower in OA than in RA, suggesting a relative failure of the HIF-α pathway to effectively produce a viable vasculature for OA, which is consistent with the degenerative nature of the disease. The activation of the HIF-α pathway occurs in both RA and OA, although for unrelated reasons

    Cytoplasmic location of factor-inhibiting hypoxia-inducible factor is associated with an enhanced hypoxic response and a shorter survival in invasive breast cancer

    Get PDF
    INTRODUCTION: Hypoxia-inducible factor (HIF)-1alpha levels in invasive breast carcinoma have been shown to be an adverse prognostic indicator. Cellular HIF-1alpha activity is regulated by factor-inhibiting hypoxia-inducible factor 1 (FIH-1). In hypoxia, FIH-1 hydroxylation of Asn803 within the C-terminal transactivation domain does not occur and HIF-1alpha forms a fully active transcriptional complex. The present study investigates the role of FIH-1 in invasive breast carcinoma and its correlation with hypoxia. METHODS: Microarrayed tissue cores from 295 invasive carcinomas were stained for FIH-1, for HIF-1alpha and for carbonic anhydrase 9. FIH-1 expression was correlated with standard clinicopathological parameters and with the expression of the surrogate hypoxic markers HIF-1alpha and carbonic anhydrase 9. RESULTS: FIH-1 was positive in 239/295 (81%) tumours, 42/295 (14%) exclusively in the nucleus and 54/295 (18%) exclusively in the cytoplasm. Exclusive nuclear FIH-1 expression was significantly inversely associated with tumour grade (P = 0.02) and risk of recurrence (P = 0.04), whereas exclusive cytoplasmic FIH-1 was significantly positively associated with tumour grade (P = 0.004) and carbonic anhydrase 9 expression (P = 0.02). Patients with tumours that excluded FIH-1 from the nucleus had a significantly shorter survival compared with those with exclusive nuclear expression (P = 0.02). Cytoplasmic FIH-1 expression was also an independent poor prognostic factor for disease-free survival. CONCLUSION: FIH-1 is widely expressed in invasive breast carcinoma. As with other HIF regulators, its association between cellular compartmentalization and the hypoxic response and survival suggests that tumour regulation of FIH-1 is an additional important mechanism for HIF pathway activation

    Mitochondrial modulators of hypoxia-related pathways in tumours

    No full text
    The Lon protease is a mitochondrial matrix quality-control protease belonging to the family of AAA+ proteins (ATPases associated with many cellular activities). We had previously found Lon to be upregulated in lung tumours with a non-angiogenic phenotype in a microarray study comparing these to conventional angiogenic tumours. In this project I set out to investigate whether Lon had any role in modulating the hypoxic response of tumour cells. Using a novel monoclonal antibody against Lon, I found that upregulation of Lon was present in breast and lung tumours and that higher levels of Lon are correlated with shorter overall survival in breast cancer patients. Targeting Lon with siRNA and shRNA in tumour cell lines reduced the normoxic and hypoxic stabilisation of HIF-α subunits. This is mediated through a mechanism independent of the activity of HIF-prolyl hydroxylases and independent of any changes in mitochondrial transcription. I found that the pre-imported form of Lon could bind and chaperone VHL in the cytoplasm potentially modulating VHL activity. In cell lines and human tumours, I observed that the proline-hydroxylated form of HIF-1α is induced by hypoxia and the hydroxylated form of HIF-1α is associated with shorter overall survival in breast cancer patients. This observation supports the notion that higher levels of Lon is associated with poor survival by downregulating VHL leading to higher levels of hydroxylated HIF. Finally I show that targeting Lon in cell lines is able to inhibit growth in a cell-line dependent fashion and partially reverses the Warburg effect, increasing oxygen consumption and reducing lactate production. In conclusion, I have demonstrated the broad therapeutic potential of targeting the Lon protease in tumours and highlighted a mechanism of post-hydroxylation HIF-regulation that has not been previously recognised in VHL competent tumours.This thesis is not currently available in ORA
    corecore