9 research outputs found

    Occurrence of deformed wing virus variants in the stingless Melipona subnitida and honey Apis mellifera bee populations in North Eastern Brazil

    Get PDF
    Deformed wing virus (DWV) is now a global insect pathogen. Brazilian stingless bees are a diverse group often managed in close proximity to honey bees. We investigated the prevalence and load of DWV in 33 stingless bees (Melipona subnitida) and 12 honey bees (Apis mellifera) colonies from NE Brazil. DWV was detected in all colonies with the A and C-variants dominating M. subnitida and A-variant in A. mellifera. Viral loads were 8.83E+07 and 7.19E+07 in M. subnitida and A. mellifera, respectively. On Fernando de Noronha island DWV is low (<1E+03) in honey bees, but we detected high loads (1.6E+08) in nine island M. subnitida colonies, indicating no viral spill-over of DWV has occurred during the past 34 years. Furthermore, the ubiquitous presence of the DWV-C variant in M. subnitida colonies, and rarity in A. mellifera, may suggest limited viral exchange between these two species

    Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies

    Get PDF
    Deformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies

    Ten years of Deformed Wing Virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is potentially being replaced by variants with a DWV-B coding sequence

    Get PDF
    The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa’s association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies

    Near-source passive sampling for monitoring viral outbreaks within a university residential setting

    Get PDF
    \ua9 2024 Cambridge University Press. All rights reserved. Wastewater based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly SARS-CoV-2. For accurate and timely assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is yet under-investigated. To address this, near-source passive samples were taken at four locations targeting student halls of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza-A and B viruses and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, where samplers remained in the sewer for 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using qPCR and Next Generation Sequencing. Furthermore, several outbreaks of influenza-A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified amongst the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities

    City-wide wastewater genomic surveillance through the successive emergence of SARS-CoV-2 Alpha and Delta variants.

    Get PDF
    Genomic surveillance of SARS-CoV-2 has provided a critical evidence base for public health decisions throughout the pandemic. Sequencing data from clinical cases has helped to understand disease transmission and the spread of novel variants. Genomic wastewater surveillance can offer important, complementary information by providing frequency estimates of all variants circulating in a population without sampling biases. Here we show that genomic SARS-CoV-2 wastewater surveillance can detect fine-scale differences within urban centres, specifically within the city of Liverpool, UK, during the emergence of Alpha and Delta variants between November 2020 and June 2021. Furthermore, wastewater and clinical sequencing match well in the estimated timing of new variant rises and the first detection of a new variant in a given area may occur in either clinical or wastewater samples. The study's main limitation was sample quality when infection prevalence was low in spring 2021, resulting in a lower resolution of the rise of the Delta variant compared to the rise of the Alpha variant in the previous winter. The correspondence between wastewater and clinical variant frequencies demonstrates the reliability of wastewater surveillance. However, discrepancies in the first detection of the Alpha variant between the two approaches highlight that wastewater monitoring can also capture missing information, possibly resulting from asymptomatic cases or communities less engaged with testing programmes, as found by a simultaneous surge testing effort across the city

    Fractures of the pelvis in children: a review of the literature

    No full text
    corecore