124 research outputs found

    Analysis of variance

    Get PDF

    Frequency Scaling of Microwave Conductivity in the Integer Quantum Hall Effect Minima

    Full text link
    We measure the longitudinal conductivity σxx\sigma_{xx} at frequencies 1.246GHzf10.051.246 {\rm GHz} \le f \le 10.05 GHz over a range of temperatures 235mKT4.2235 {\rm mK} \le T \le 4.2 K with particular emphasis on the Quantum Hall plateaus. We find that Re(σxx)Re(\sigma_{xx}) scales linearly with frequency for a range of magnetic field around the center of the plateaus, i.e. where σxx(ω)σxxDC\sigma_{xx}(\omega) \gg \sigma_{xx}^{DC}. The width of this scaling region decreases with higher temperature and vanishes by 1.2 K altogether. Comparison between localization length determined from σxx(ω)\sigma_{xx}(\omega) and DC measurements on the same wafer show good agreement.Comment: latex 4 pages, 4 figure

    Quantum corrections to conductivity: from weak to strong localization

    Full text link
    Results of detailed investigations of the conductivity and Hall effect in gated single quantum well GaAs/InGaAs/GaAs heterostructures with two-dimensional electron gas are presented. A successive analysis of the data has shown that the conductivity is diffusive for kFl=252k_F l=25-2 and behaves like diffusive one for kFl=20.5k_F l=2-0.5 down to the temperature T=0.4 K. It has been therewith found that the quantum corrections are not small at low temperature when kFl1k_F l\simeq 1. They are close in magnitude to the Drude conductivity so that the conductivity σ\sigma becomes significantly less than e2/he^{2}/h (the minimal σ\sigma value achieved in our experiment is about 3×108Ω13\times 10^{-8}\Omega^{-1} at kFl0.5k_Fl\simeq 0.5 and T=0.46T=0.46 K). We conclude that the temperature and magnetic field dependences of conductivity in whole kFlk_Fl range are due to changes of quantum corrections.Comment: RevTex 4.0, 10 figures, 7 two-column page

    Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity

    Full text link
    Large positive (P) magnetoresistance (MR) has been observed in parallel magnetic fields in a single 2D layer in a delta-doped GaAs/AlGaAs heterostructure with a variable-range-hopping (VRH) mechanism of conductivity. Effect of large PMR is accompanied in strong magnetic fields by a substantial change in the character of the temperature dependence of the conductivity. This implies that spins play an important role in 2D VRH conductivity because the processes of orbital origin are not relevant to the observed effect. A possible explanation involves hopping via double occupied states in the upper Hubbard band, where the intra-state correlation of spins is important.Comment: 10 pages, 4 jpeg figure

    The Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors

    Full text link
    We present low temperature electrical transport experiments in five field effect transistor devices consisting of monolayer, bilayer and trilayer MoS2 films, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal that the electronic states in all films are localized well up to the room temperature over the experimentally accessible range of gate voltage. This manifests in two dimensional (2D) variable range hopping (VRH) at high temperatures, while below \sim 30 K the conductivity displays oscillatory structures in gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T0) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges in the substrate are the dominant source of disorder in MoS2 field effect devices, which leads to carrier localization as well.Comment: 10 pages, 5 figures; ACS Nano (2011
    corecore