3 research outputs found

    Sustainability education beyond the classroom: how the “exploding university” nurtures collective intelligence across local and global communities

    Get PDF
    This chapter explores how the authors expanded their teaching and learning beyond the classroom at Manchester Metropolitan University in the UK. It puts forward the theoretical concept of the “exploding university” as a way to help develop a critical yet hopeful understanding of collective problems at local and global scales. This helps them explore three interrelated initiatives that brought teachers, students, and communities together, namely a sustainability festival, research project on animal rehoming, and community tree-planting drive. The chapter illuminates how exploding the work beyond the classroom enabled everyone involved to take action on the challenges that matter to them, while also developing a “collective intelligence” about their underlying causes. The exploding university thus emerges as a theoretical and practical model, which we can use to inspire students to actively critique, reimagine, and reconstruct the world around them. The authors conclude by encouraging and supporting others who might wish to embark on similar journeys themselves

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore