4 research outputs found

    Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation

    Get PDF
    In this paper, anionic TEMPO-oxidized cellulose nanofibers (TO-CNFs) and cationic, partially deacetylated, chitin nanocrystals (ChNCs) were used to fabricate continuous composite filaments (TO-CNF/ChNC filament) with a straightforward and sustainable aqueous process based on the interfacial nanoparticle complexation (INC) of oppositely charged nano-constituents. In particular, the role of TO-CNF and ChNC concentrations in filament drawing and the effect of drawing speed on the mechanical properties of composite filaments were investigated. Moreover, conductive filaments were fabricated by mixing single walled carbon nanotubes (SWCNTs) with TO-CNF dispersion and further complexing with the ChNC aqueous suspension. A conductive filament with an electrical conductivity of 2056 S/m was obtained. However, the increase in the SWCNTs content reduced the mechanical properties of the formed filament compared to neat TO-CNF/ChNC filament. This study not only introduces a new nanoparticle candidate to prepare filaments based on INC method but also provides potential advanced and alternative green filament to be used as wearable electronics in biomedical area

    Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation

    Get PDF
    The present work demonstrates the spinning of conductive filaments from oppositely charged nano-scale entities, i.e., cationic cellulose nanocrystals (CNC) and anionic graphene oxide (GO), via interfacial nanoparticle complexation. Especially, the role of CNC and GO concentration in filament formation was investigated. Moreover, the chemical structure, morphology and composition of formed CNC/GO composite filaments were further characterized. The positively charged CNC formed firstly a complex film with negatively charged GO flake and then the complexed structures were further assembled into macroscale hybrid filament (diameter about 20 to 50 μm). After chemical reduction of the hybrid filament, conductive filaments with an average tensile strength of 109 ± 8 MPa and electrical conductivity of 3298 ± 167 S/m were obtained. The presented approach provides a new pathway to understand the interaction of GO and nanocellulose, and to design macroscopic, assembled and functionalized architectures of GO and nanocellulose composites

    Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation

    No full text
    Abstract In this paper, anionic TEMPO-oxidized cellulose nanofibers (TO-CNFs) and cationic, partially deacetylated, chitin nanocrystals (ChNCs) were used to fabricate continuous composite filaments (TO-CNF/ChNC filament) with a straightforward and sustainable aqueous process based on the interfacial nanoparticle complexation (INC) of oppositely charged nano-constituents. In particular, the role of TO-CNF and ChNC concentrations in filament drawing and the effect of drawing speed on the mechanical properties of composite filaments were investigated. Moreover, conductive filaments were fabricated by mixing single walled carbon nanotubes (SWCNTs) with TO-CNF dispersion and further complexing with the ChNC aqueous suspension. A conductive filament with an electrical conductivity of 2056 S/m was obtained. However, the increase in the SWCNTs content reduced the mechanical properties of the formed filament compared to neat TO-CNF/ChNC filament. This study not only introduces a new nanoparticle candidate to prepare filaments based on INC method but also provides potential advanced and alternative green filament to be used as wearable electronics in biomedical area

    Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation

    No full text
    Abstract The present work demonstrates the spinning of conductive filaments from oppositely charged nano-scale entities, i.e., cationic cellulose nanocrystals (CNC) and anionic graphene oxide (GO), via interfacial nanoparticle complexation. Especially, the role of CNC and GO concentration in filament formation was investigated. Moreover, the chemical structure, morphology and composition of formed CNC/GO composite filaments were further characterized. The positively charged CNC formed firstly a complex film with negatively charged GO flake and then the complexed structures were further assembled into macroscale hybrid filament (diameter about 20 to 50 μm). After chemical reduction of the hybrid filament, conductive filaments with an average tensile strength of 109 ± 8 MPa and electrical conductivity of 3298 ± 167 S/m were obtained. The presented approach provides a new pathway to understand the interaction of GO and nanocellulose, and to design macroscopic, assembled and functionalized architectures of GO and nanocellulose composites
    corecore