3 research outputs found

    Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression-Case Report

    Get PDF
    Depression is a debilitating disorder, and at least one third of patients do not respond to therapy. Associations between gut microbiota and depression have been observed in recent years, opening novel treatment avenues. Here, we present the first two patients with major depressive disorder ever treated with fecal microbiota transplantation as add-on therapy. Both improved their depressive symptoms 4 weeks after the transplantation. Effects lasted up to 8 weeks in one patient. Gastrointestinal symptoms, constipation in particular, were reflected in microbiome changes and improved in one patient. This report suggests further FMT studies in depression could be worth pursuing and adds to awareness as well as safety assurance, both crucial in determining the potential of FMT in depression treatment

    Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial

    Get PDF
    A promising new treatment approach for major depressive disorder (MDD) targets the microbiota-gut-brain (MGB) axis, which is linked to physiological and behavioral functions affected in MDD. This is the first randomized controlled trial to determine whether short-term, high-dose probiotic supplementation reduces depressive symptoms along with gut microbial and neural changes in depressed patients. Patients with current depressive episodes took either a multi-strain probiotic supplement or placebo over 31 days additionally to treatment-as-usual. Assessments took place before, immediately after and again four weeks after the intervention. The Hamilton Depression Rating Sale (HAM-D) was assessed as primary outcome. Quantitative microbiome profiling and neuroimaging was used to detect changes along the MGB axis. In the sample that completed the intervention (probiotics N = 21, placebo N = 26), HAM-D scores decreased over time and interactions between time and group indicated a stronger decrease in the probiotics relative to the placebo group. Probiotics maintained microbial diversity and increased the abundance of the genus Lactobacillus, indicating the effectivity of the probiotics to increase specific taxa. The increase of the Lactobacillus was associated with decreased depressive symptoms in the probiotics group. Finally, putamen activation in response to neutral faces was significantly decreased after the probiotic intervention. Our data imply that an add-on probiotic treatment ameliorates depressive symptoms (HAM-D) along with changes in the gut microbiota and brain, which highlights the role of the MGB axis in MDD and emphasizes the potential of microbiota-related treatment approaches as accessible, pragmatic, and non-stigmatizing therapies in MDD. Trial Registration: www.clinicaltrials.gov, identifier: NCT02957591

    Neural mapping of anhedonia across psychiatric diagnoses: A transdiagnostic neuroimaging analysis

    No full text
    Anhedonia has been associated with abnormal reward-related striatal dopamine functioning in patients with different psychiatric disorders. Here, we tested whether anhedonia expression mapped onto striatal volume across several psychiatric diagnoses. T1-weighted images from 313 participants including 89 healthy controls (HC), 22 patients with opioid use disorder (OUD), 50 patients with major depressive disorder (MDD), 45 patients with borderline personality disorder (BPD), 49 patients with first-episode psychosis (FEP), 43 patients with cocaine use disorder (CUD) and 15 patients with schizophrenia (SZ) were included. Anhedonia was assessed with subscores of the Beck Depression Inventory (BDI) and/or the Scale for the Assessment of Negative Symptoms (SANS). Voxel-based morphometry (VBM) was conducted for identifying dimensional symptom-structure associations using region of interest (ROI, dorsal and ventral striatum) and whole-brain analyses, as well as for group comparisons of striatal volume. ROI analyses revealed significant negative relationships between putamen volume and BDI and SANS anhedonia scores across OUD, MDD, BPD, CUD and SZ patients (n = 175) and MDD, FEP and SZ patients (n = 114), respectively. Whole-brain VBM analyses confirmed these associations and further showed negative relationships between anhedonia severity and volume of the bilateral cerebellum. There were group differences in right accumbens volume, which however were not related to anhedonia expression across the different diagnoses. Our findings indicate volumetric abnormalities in the putamen and cerebellum as a common neural substrate of anhedonia severity that cut across psychiatric entities
    corecore