35 research outputs found

    Acute changes in the colonic microbiota are associated with large intestinal forms of surgical colic

    Get PDF
    Background Horses that undergo surgery for treatment of primary large colon disease have been reported to be at increased risk of developing recurrent colic episodes postoperatively. The reasons for this are currently unknown. The aim of the current study was to characterise the faecal microbiota of horses with colic signs associated with primary large colon lesions treated surgically and to compare the composition of their faecal microbiota to that of a control group of horses undergoing emergency orthopaedic treatment. Faecal samples were collected from horses in both groups on admission to hospital, during hospitalisation and following discharge from hospital for a total duration of 12 weeks. Additionally, colonic content samples were collected from surgical colic patients if pelvic flexure enterotomy was performed during laparotomy. A total of 12 samples were collected per horse. DNA was extracted from samples using a commercial kit. Amplicon mixtures were created by PCR amplification of the V1 – V2 regions of the bacterial 16S rRNA genes and submitted for sequencing using the Ion Torrent PGM next-generation sequencing system. Multivariate data analysis was used to characterise the faecal microbiota and to investigate differences between groups. Results Reduced species richness was evident in the colonic samples of the colic group compared to concurrent sampling of the faeces. Alpha and beta diversity differed significantly between the faecal and colonic microbiota with 304 significantly differentially abundant OTUs identified. Only 46 OTUs varied significantly between the colic and control group. There were no significant differences in alpha and beta diversity of faecal microbiota between colic and control horses at admission. However, this lack of significant differences between groups should be interpreted with caution due to a small sample size. Conclusions The results of the current study suggest that faecal samples collected at hospital admission in colic cases may not accurately represent changes in upper gut microbiota in horses with colic due to large colon disease

    Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes

    Get PDF
    Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens

    The Campylobacter jejuni glycome

    No full text
    Microbial cell surface glycans in the form of glycolipids and glycoproteins frequently play important roles in cell-cell interaction and host immune responses. Given the likely importance of these surface structures in the survival and pathogenesis of Campylobacter jejuni, a concerted effort has been made to characterise these determinants genetically and structurally since the genome was sequenced in 2000. We review the considerable progress made in characterising the Campylobacter glycome including the lipooligosaccharide (LOS), the capsule and O- and N-linked protein glycosylation systems, and speculate on the roles played by glycan surface structures in the life-cycle of C. jejuni

    The Campylobacter jejuni

    No full text

    Heme Utilization in Campylobacter jejuni

    No full text
    A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni

    Cloning, mutation and distribution of a putative lipopolysaccharide biosynthesis locus in Campylobacter jejuni

    No full text
    A region encoding ORFs with homology to known lipopolysaccharide (LPS) biosynthesis genes was isolated from two strains of Campylobacter jejuni. One of the strains produces LPS, but the second strain is reported to produce only lipooligosaccharide (LOS) and therefore lacks the O-chain. The two strains shared six predicted ORFs, but an additional ORF, orfE, of unknown function was identified in the LOS-producing strain. Mutation of the shared wbeE (rfbE) homologue (orfF) or deletion of five of the seven genes reduced core reactivity with specific antiserum without affecting O-chain production. Mutation of either the capD homologue (orfG) or the unique orfE had no detectable effect on LOS or LPS production. The presence or absence of orfE in 36 isolates of C. jejuni did not correlate with LOS/LPS phenotype or serotype. However, after insertion of orfE into a LPS-producing orfE-negative strain the O-chain ladder was no longer detectable on Western blots, We were not able to disrupt the wbaP (rfbP) homologue (orfG) in C jejuni
    corecore