3 research outputs found

    Characterization of high pressure oxygenated EuBCO and GdBCO coated conductors

    Get PDF
    Program and book of abstracts / 2nd International Conference on Innovative Materials in Extreme Conditions i. e. (IMEC2024), 20-22 March 2024 Belgrade, Serbia

    Chemical and Microstructural Nanoscale Homogeneity in Superconducting YBa2Cu3O7-x Films Derived from Metal-Propionate Fluorine-free Solutions

    Get PDF
    Research involved in developing alternative energy sources has become a necessity to face global warming. In this context, superconductivity is an appealing solution to enhance clean electrical energy provided that lower production costs can be attained. By implementation of chemical solution deposition techniques and high-throughput growth methods, low-cost nanostructured epitaxial cuprate superconductors are timely candidates. Here, we present a versatile and tunable solution method suitable for the preparation of high-performance epitaxial cuprate superconducting films. Disregarding the renowned trifluoroacetate route, we center our focus on the transient liquid-assisted growth (TLAG) that meets the requirement of being a greener chemical process together with ultrafast growth rates beyond 100 nm/s. We developed a facile, fast, and cost-effective method, starting from the synthesis of metal-propionate powders of Y, Ba, and Cu of high purity and high yields, being the precursors of the fluorine-free solutions, which enable the chemical and microstructural nanoscale homogeneity of YBa2Cu3O7-x (YBCO) precursor films. These solutions present endured stability and enable precise tunability of the composition, concentration, porosity, and film thickness. Homogeneous precursor films up to thicknesses of 2.7 μm through eight layer multidepositions are demonstrated, thus establishing the correct basis for epitaxial growth using the fast kinetics of the TLAG process. YBCO films of 500 nm thickness with a critical current density of 2.6 MA/cm2 at 77 K were obtained, showing the correlation of precursor film homogeneity to the final YBCO physical properties.The authors acknowledge the European Research Council for the ULTRASUPERTAPE project (ERC-2014-ADG-669504), IMPACT project (ERC-2019-PoC-874964), and EU COST action for CA16218 (NANOCOHYBRI). The authors also acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities through the “Severo Ochoa” Programme for Centres of Excellence in FUNFUTURE (CEX2019-000917-S), SUMATE projects (RTI2018-095853-B-C21, RTI2018-095853-B-C22 co-financed by the European Regional Development Fund, MCIU/AEI/FEDER, UE), and SUPERENERTECH projects (PID2021-127297OB-C21 and PID2021-127297OB-C22). The authors also thank support from the Catalan Government with 2017-SGR-1519 and Catalan energy network XRE4S (2018 XARDI 00002). L.S., D.G., and A.K. acknowledge financial support from the Spanish Ministry of Science, Innovation and Universities through the FPI grants PRE2019-090621, PRE2018-084537, and PRE2020-091817, respectively. L.S. and D.G. would like to thank the UAB PhD program in Materials Science, and A.K. would like to thank the UAB PhD program in Physics. A.Q. would like to thank the Spanish Ministry of Science, Innovation and Universities [“Juan de la Cierva” postdoctoral fellowship (grant no. IJC2018-035034-I)]. The authors thank the Scientific Services at ICMAB and ICN2 Electron Microscopy Division. The authors acknowledge the use of instrumentation as well as the technical advice provided by the National Facility ELECMI ICTS, node “Laboratorio de Microscopías Avanzadas” at the University of Zaragoza. The content of this paper is the object of a European patent application no. EP22382741.1 filed on 29/07/2022.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    Kinetic Control of Ultrafast Transient Liquid Assisted Growth of Solution-Derived YBa2Cu3O7-x Superconducting Films

    Get PDF
    Transient liquid assisted growth (TLAG) is an ultrafast non-equilibrium growth process mainly governed by kinetic parameters, which are only accessible through fast in situ characterizations. In situ synchrotron X-ray diffraction (XRD) analysis and in situ electrical resistivity measurements are used to derive kinetic diagrams of YBa2 Cu3 O7- x (YBCO) superconducting films prepared via TLAG and to reveal the unique peculiarities of the process. In particular, diagrams for the phase evolution and the YBCO growth rates have been built for the two TLAG routes. It is shown that TLAG transient liquids can be obtained upon the melting of two barium cuprate phases (and not just one), differentiated by their copper oxidation state. This knowledge serves as a guide to determine the processing conditions to reach high performance films at high growth rates. With proper control of these kinetic parameters, films with critical current densities of 2-2.6 MA cm-2 at 77 K and growth rates between 100-2000 nm s-1 are reached. These growth rates are 1.5-3 orders of magnitude higher than those of conventional methods.The authors acknowledge the European Research Council for the ULTRASUPERTAPE project (ERC-2014-ADG-669504), IMPACT project (ERC-2019-PoC-874964) and EU COST action for CA16218 (NANOCOHYBRI). The authors also acknowledge financial support from Spanish Ministry of Science and Innovation with PID2021-127297OB-C21 and PID2021-127297OB-C22, and from Spanish Ministry of Science, Innovation and Universities through the “Severo Ochoa” Program for Centers of Excellence in R&D (SEV-2015-0496 and CEX2019-000917-S), and from the Spanish Ministry of Economy and Competitiveness with the SUMATE project (RTI2018-095853-B-C21, RTI2018-095853-B-C22, co-financed by the European Regional Development Fund, MCIU/AEI/FEDER, UE). They also thank the Catalan Government (2017-SGR-1519) and the Catalan energy network XRE4S (2018 XARDI 00002) for their support. L.S., D.G., and A.K. acknowledge financial support from Spanish Ministry of Science, Innovation and Universities through the FPI grant PRE2019-090621, PRE2018-084537, and PRE2020-091817, respectively. L.So. and J.J. acknowledge financial support from Spanish Ministry for the FPU grants. S.R. thanks the Universitat de Girona for IFUdG grant and A.Q. thanks the Spanish Ministry of Science, Innovation and Universities (“Juan de la Cierva” postdoctoral fellowship [Grant no. IJC2018-035034-I]). The authors thank the Scientific Services at ICMAB and ICN2 Electron Microscopy Division. The authors acknowledge the use of instrumentation as well as the technical advice provided by the National Facility ELECMI ICTS, node “Laboratorio de Microscopías Avanzadas” at University of Zaragoza. The authors also acknowledge SOLEIL Synchrotron for provision of synchrotron radiation facilities and are grateful for assistance while using the DiffAbs beamline.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore