1 research outputs found

    Quantum Chaos and Random Matrix Theory - Some New Results

    Full text link
    New insight into the correspondence between Quantum Chaos and Random Matrix Theory is gained by developing a semiclassical theory for the autocorrelation function of spectral determinants. We study in particular the unitary operators which are the quantum versions of area preserving maps. The relevant Random Matrix ensembles are the Circular ensembles. The resulting semiclassical expressions depend on the symmetry of the system with respect to time reversal, and on a classical parameter μ=trU1\mu = tr U -1 where U is the classical 1-step evolution operator. For system without time reversal symmetry, we are able to reproduce the exact Random Matrix predictions in the limit μ0\mu \to 0. For systems with time reversal symmetry we can reproduce only some of the features of Random Matrix Theory. For both classes we obtain the leading corrections in μ\mu. The semiclassical theory for integrable systems is also developed, resulting in expressions which reproduce the theory for the Poissonian ensemble to leading order in the semiclassical limit.Comment: LaTeX, 16 pages, to appear in a special issue of Physica D with the proceedings of the workshop on "Physics and Dynamics Between Chaos, Order, and Noise", Berlin, 199
    corecore