15 research outputs found

    Sorl1 as an Alzheimer's disease predisposition gene?

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressively disabling impairments in memory, cognition, and non-cognitive behavioural symptoms. Sporadic AD is multifactorial and genetically complex. While several monogenic mutations cause early-onset AD and gene alleles have been suggested as AD susceptibility factors, the only extensively validated susceptibility gene for late-onset AD is the apolipoprotein E (APOE) epsilon4 allele. Alleles of the APOE gene do not account for all of the genetic load calculated to be responsible for AD predisposition. Recently, polymorphisms across the neuronal sortilin-related receptor (SORL1) gene were shown to be significantly associated with AD in several cohorts. Here we present the results of our large case-control whole-genome scan at over 500,000 polymorphisms which presents weak evidence for association and potentially narrows the association interval

    BIOINFORMATICS ORIGINAL PAPER

    No full text
    Genetics and population analysis SNiPer-HD: improved genotype calling accuracy by an expectation-maximization algorithm for high-density SNP arrays Vol. 23 no. 1 2007, pages 57–63 doi:10.1093/bioinformatics/btl53

    A survey of genetic human cortical gene expression

    No full text
    It is widely assumed that genetic differences in gene expression underpin much of the difference among individuals and many of the quantitative traits of interest to geneticists. Despite this, there has been little work on genetic variability in human gene expression and almost none in the human brain, because tools for assessing this genetic variability have not been available. Now, with whole-genome SNP genotyping arrays and whole-transcriptome expression arrays, such experiments have become feasible. We have carried out whole-genome genotyping and expression analysis on a series of 193 neuropathologically normal human brain samples using the Affymetrix GeneChip Human Mapping 500K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. Here we present data showing that 58% of the transcriptome is cortically expressed in at least 5% of our samples and that of these cortically expressed transcripts, 21% have expression profiles that correlate with their genotype. These genetic-expression effects should be useful in determining the underlying biology of associations with common diseases of the human brain and in guiding the analysis of the genomic regions involved in the control of normal gene expression

    Whole-genome analysis of sporadic amyotrophic lateral sclerosis

    No full text
    Background: Approximately 90% of persons with amyotrophic lateral sclerosis (ALS) have the sporadic form, which may be caused by the interaction of multiple environmental factors and previously unknown genes. Methods: We performed a genomewide association analysis using 766,955 single-nucleotide polymorphisms (SNPs) found in 386 white patients with sporadic ALS and 542 neurologically normal white controls (the discovery series). Associations of SNPs with sporadic ALS were confirmed in two independent replication populations: replication series 1, with 766 case patients with the disease and 750 neurologically normal controls, and replication series 2, with 135 case patients and 275 controls. Results: We identified 10 genetic loci that are significantly associated (P\u3c0.05) with sporadic ALS in three independent series of case patients and controls and an additional 41 loci that had significant associations in two of the three series. The most significant association with disease in white case patients as compared with controls was found for a SNP near an uncharacterized gene known as FLJ10986 (P = 3.0 x 10-4; odds ratio for having the genotype in patients vs. controls, 1.35; 95% confidence interval, 1.13 to 1.62). The FLJ10986 protein was found to be expressed in the spinal cord and cerebrospinal fluid of patients and of controls. Specific SNPs seem to be associated with sex, age at onset, and site of onset of sporadic ALS. Conclusions: Variants of FLJ10986 may confer susceptibility to sporadic ALS. FLJ10986 and 50 other candidate loci warrant further investigation for their potential role in conferring susceptibility to the disease. Copyright © 2007 Massachusetts Medical Society

    Whole-genome analysis of sporadic amyotrophic lateral sclerosis

    No full text
    Background: Approximately 90% of persons with amyotrophic lateral sclerosis (ALS) have the sporadic form, which may be caused by the interaction of multiple environmental factors and previously unknown genes. Methods: We performed a genomewide association analysis using 766,955 single-nucleotide polymorphisms (SNPs) found in 386 white patients with sporadic ALS and 542 neurologically normal white controls (the discovery series). Associations of SNPs with sporadic ALS were confirmed in two independent replication populations: replication series 1, with 766 case patients with the disease and 750 neurologically normal controls, and replication series 2, with 135 case patients and 275 controls. Results: We identified 10 genetic loci that are significantly associated (P\u3c0.05) with sporadic ALS in three independent series of case patients and controls and an additional 41 loci that had significant associations in two of the three series. The most significant association with disease in white case patients as compared with controls was found for a SNP near an uncharacterized gene known as FLJ10986 (P = 3.0 x 10-4; odds ratio for having the genotype in patients vs. controls, 1.35; 95% confidence interval, 1.13 to 1.62). The FLJ10986 protein was found to be expressed in the spinal cord and cerebrospinal fluid of patients and of controls. Specific SNPs seem to be associated with sex, age at onset, and site of onset of sporadic ALS. Conclusions: Variants of FLJ10986 may confer susceptibility to sporadic ALS. FLJ10986 and 50 other candidate loci warrant further investigation for their potential role in conferring susceptibility to the disease. Copyright © 2007 Massachusetts Medical Society

    Whole genome association analysis shows that ACE is a risk factor for Alzheimer's disease and fails to replicate most candidates from Meta-analysis

    No full text
    For late onset Alzheimer's disease (LOAD), the only confirmed, genetic association is with the apolipoprotein E (APOE) locus on chromosome 19. Meta-analysis is often employed to sort the true associations from the false positives. LOAD research has the advantage of a continuously updated meta-analysis of candidate gene association studies in the web-based AlzGene database. The top 30 AlzGene loci on May 1st, 2007 were investigated in our whole genome association data set consisting of 1411 LOAD cases and neuropathoiogicaiiy verified controls genotyped at 312,316 SNPs using the Affymetrix 500K Mapping Platform. Of the 30 “top AlzGenes", 32 SNPs in 24 genes had odds ratios (OR) whose 95% confidence intervals that did not include 1. Of these 32 SNPs, six were part of the Affymetrix 500K Mapping panel and another ten had proxies on the Affymetrix array that had >80% power to detect an association with α=0.001. Two of these 16 SNPs showed significant association with LOAD in our sample series. One was rs4420638 at the APOE locus (uncorrected p-value=4.58E-37) and the other was rs4293, located in the angiotensin converting enzyme (ACE) locus (uncorrected p-value=0.014). Since this result was nominally significant, but did not survive multiple testing correction for 16 independent tests, this association at rs4293 was verified in a geographically distinct German cohort (p-value=0.03). We present the results of our ACE replication aiongwith a discussion of the statistical limitations of multiple test corrections in whole genome studies

    Evidence for an association between KIBRA and late-onset Alzheimer's disease

    No full text
    We recently reported evidence for an association between the individual variation in normal human episodic memory and a common variant of the KIBRA gene, KIBRA rs17070145 (T-allele). Since memory impairment is a cardinal clinical feature of Alzheimer's disease (AD), we investigated the possibility of an association between the KIBRA gene and AD using data from neuronal gene expression, brain imaging studies, and genetic association tests. KIBRA was significantly over-expressed and three of its four known binding partners under-expressed in AD-affected hippocampal, posterior cingulate and temporal cortex regions (P>0.010, corrected) in a study of laser-capture microdissected neurons. Using positron emission tomography in a cohort of cognitively normal, late-middle-aged persons genotyped for KIBRA rs17070145, KIBRA T non-carriers exhibited lower glucose metabolism than did carriers in posterior cingulate and precuneus brain regions (P>0.001, uncorrected). Lastly, non-carriers of the KIBRA rs17070145 T-allele had increased risk of late-onset AD in an association study of 702 neuropathologically verified expired subjects (P=0.034; OR=1.29) and in a combined analysis of 1026 additional living and expired subjects (P=0.039; OR=1.26). Our findings suggest that KIBRA is associated with both individual variation in normal episodic memory and predisposition to AD

    A survey of genetic human cortical gene expression

    No full text
    It is widely assumed that genetic differences in gene expression underpin much of the difference among individuals and many of the quantitative traits of interest to geneticists. Despite this, there has been little work on genetic variability in human gene expression and almost none in the human brain, because tools for assessing this genetic variability have not been available. Now, with whole-genome SNP genotyping arrays and whole-transcriptome expression arrays, such experiments have become feasible. We have carried out whole-genome genotyping and expression analysis on a series of 193 neuropathologically normal human brain samples using the Affymetrix GeneChip Human Mapping 500K Array Set and Illumina HumanRefseq-8 Expression BeadChip platforms. Here we present data showing that 58% of the transcriptome is cortically expressed in at least 5% of our samples and that of these cortically expressed transcripts, 21% have expression profiles that correlate with their genotype. These genetic-expression effects should be useful in determining the underlying biology of associations with common diseases of the human brain and in guiding the analysis of the genomic regions involved in the control of normal gene expression
    corecore