4 research outputs found

    Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models

    Full text link
    The ongoing SARS-CoV-2 pandemic is controlled but not halted by public health measures and mass vaccination strategies which have exclusively relied on intramuscular vaccines. Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing infection. Here we report a comprehensive series of studies on this concept using various mouse models, including HLA class II-humanized transgenic strains. We found that a single intranasal (i.n.) dose of serotype-5 adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) serum and bronchoalveolar lavage (BAL) anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and BAL, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of mice from a challenge with the SARS-CoV-2 beta variant. Intramuscular (i.m.) Ad5-RBD or Ad5-S administration did not induce serum or BAL IgA, and resulted in lower neutralizing titers in the serum. Moreover, prior immunity induced by an intramuscular mRNA vaccine could be potently enhanced and modulated towards a mucosal IgA response by an i.n. Ad5-S booster. Notably, Ad5 DNA was found in the liver or spleen after i.m. but not i.n. administration, indicating a lack of systemic spread of the vaccine vector, which has been associated with a risk of thrombotic thrombocytopenia. Unlike in otherwise genetically identical HLA-DQ6 mice, in HLA-DQ8 mice Ad5-RBD vaccine was inferior to Ad5-S, suggesting that the RBD fragment does not contain a sufficient collection of helper-T cell epitopes to constitute an optimal vaccine antigen. Our data add to previous promising preclinical results on intranasal SARS-CoV-2 vaccination and support the potential of this approach to elicit mucosal immunity for preventing transmission of SARS-CoV-2

    Lake browning impacts community structure and essential fatty acid content of littoral invertebrates in boreal lakes

    No full text
    Many lakes in the northern hemisphere are browning due to increasing concentrations of terrestrial dissolved organic carbon (DOC). The consequences of lake browning to littoral invertebrates, however, are not fully understood. We analyzed community structure and fatty acid (FA) profiles of littoral invertebrates in humic (DOC-rich) and clear-water lakes in Eastern Finland. We found higher abundance of chironomids (Diptera: Chironomidae) in humic compared to clear-water lakes, whereas stoneflies (Plecoptera) and mayflies (Ephemeroptera: Baetidae) were more abundant in clear-water lakes. Taxon explained 65% of the differences in the FA composition of littoral invertebrates. However, the proportion and content of polyunsaturated FAs of several taxa were significantly higher in clear-water lakes compared to humic lakes. Our results reveal differences in both community structure and nutritional quality of littoral invertebrates for fish between humic and clear-water lakes.peerReviewe

    Environmental drivers alter PUFA content in littoral macroinvertebrate assemblages via changes in richness and abundance

    No full text
    Shallow littoral areas in lakes are productive and highly diverse ecotonal zones, providing habitats for both invertebrate and vertebrate species. We developed a Bayesian modeling framework to elucidate the relationships between environmental drivers (lake typology, habitat, water chemistry, and latitude) and taxon richness, abundance, as well as the content of polyunsaturated fatty acids (PUFAs) in littoral macroinvertebrate communities in 95 boreal lakes. PUFAs, particularly arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are critical micronutrients to maintain normal physiological functions in consumers. Lake typology was a significant predictor for PUFA content in the invertebrate assemblages, which was connected to taxon richness and/or abundance. Benthic communities in large humus-poor or nutrient-rich lakes displayed higher abundance, taxon richness, and more PUFA-rich taxa, whereas those in medium- and large-sized humic (color 30–90 mg Pt/L) and humus-rich lakes (color >90 mg Pt/L) were characterized by decreased abundance and subsequently low PUFA content. The abundance, taxon richness, and nutritional quality of the communities were also strongly related to latitude. Lakes with lower pH were characterized by lower benthic invertebrate diversity and low frequency of taxa with high somatic EPA and DHA content. The complexity of littoral habitats dominated by various macrophyte assemblages creates an environment that favors higher benthic abundance and increased presence of taxonomic groups with high PUFA content. Nutritional quality of benthic invertebrates for upper trophic levels can be modulated by a complex interplay between external stressors and abiotic factors that typically shape the structure of littoral benthic communities.peerReviewe

    Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models

    No full text
    The ongoing SARS-CoV-2 pandemic is controlled but not halted by public health measures and mass vaccination strategies which have exclusively relied on intramuscular vaccines. Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing infection. Here we report a comprehensive series of studies on this concept using various mouse models, including HLA class II-humanized transgenic strains. We found that a single intranasal (i.n.) dose of serotype-5 adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) serum and bronchoalveolar lavage (BAL) anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and BAL, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of mice from a challenge with the SARS-CoV-2 beta variant. Intramuscular (i.m.) Ad5-RBD or Ad5-S administration did not induce serum or BAL IgA, and resulted in lower neutralizing titers in the serum. Moreover, prior immunity induced by an intramuscular mRNA vaccine could be potently enhanced and modulated towards a mucosal IgA response by an i.n. Ad5-S booster. Notably, Ad5 DNA was found in the liver or spleen after i.m. but not i.n. administration, indicating a lack of systemic spread of the vaccine vector, which has been associated with a risk of thrombotic thrombocytopenia. Unlike in otherwise genetically identical HLA-DQ6 mice, in HLA-DQ8 mice Ad5-RBD vaccine was inferior to Ad5-S, suggesting that the RBD fragment does not contain a sufficient collection of helper-T cell epitopes to constitute an optimal vaccine antigen. Our data add to previous promising preclinical results on intranasal SARS-CoV-2 vaccination and support the potential of this approach to elicit mucosal immunity for preventing transmission of SARS-CoV-2.Peer reviewe
    corecore