194 research outputs found
Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects
Global food production, food supply chains and food security are increasingly stressed by human population growth and loss of arable land, becoming more vulnerable to anthropogenic and environmental perturbations. Numerous mutualistic and antagonistic species are interconnected with the cultivation of crops and livestock and these can be challenging to identify on the large scales of food production systems. Accurate identifications to capture this diversity and rapid scalable monitoring are necessary to identify emerging threats (i.e. pests and pathogens), inform on ecosystem health (i.e. soil and pollinator diversity), and provide evidence for new management practices (i.e. fertiliser and pesticide applications). Increasingly, environmental DNA (eDNA) is providing rapid and accurate classifications for specific organisms and entire species assemblages in substrates ranging from soil to air. Here, we aim to discuss how eDNA is being used for monitoring of agricultural ecosystems, what current limitations exist, and how these could be managed to expand applications into the future. In a systematic review we identify that eDNA-based monitoring in food production systems accounts for only 4 % of all eDNA studies. We found that the majority of these eDNA studies target soil and plant substrates (60 %), predominantly to identify microbes and insects (60 %) and are biased towards Europe (42 %). While eDNA-based monitoring studies are uncommon in many of the world\u27s food production systems, the trend is most pronounced in emerging economies often where food security is most at risk. We suggest that the biggest limitations to eDNA for agriculture are false negatives resulting from DNA degradation and assay biases, as well as incomplete databases and the interpretation of abundance data. These require in silico, in vitro, and in vivo approaches to carefully design, test and apply eDNA monitoring for reliable and accurate taxonomic identifications. We explore future opportunities for eDNA research which could further develop this useful tool for food production system monitoring in both emerging and developed economies, hopefully improving monitoring, and ultimately food security
Recommended from our members
Mixing of Al Into Uranium Silicides Reactor Fuels
SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the {sup 27}Al(p, {gamma}) {sup 28}Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U{sub 3}Si and U{sub 3}Si{sub 2} after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U{sub 3}Si. At a low dose, the Al layer is converted into UAl{sub 4} type compound while near the interface the phase U(Al{sub .93}Si{sub .07}){sub 3} grows. Under irradiation, Al diffuses out of the UAl{sub 4} surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U{sub 3}Si{sub 2} is slower than in U{sub 3}Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed
The unidentified TeV source (TeVJ2032+4130) and surrounding field: Final HEGRA IACT-System results
The unidentified TeV source in Cygnus is now confirmed by follow-up
observations from 2002 with the HEGRA stereoscopic system of Cherenkov
Telescopes. Using all data (1999 to 2002) we confirm this new source as steady
in flux over the four years of data taking, extended with radius 6.2 arcmin
(+-1.2 arcmin (stat) +-0.9 arcmin (sys)) and exhibiting a hard spectrum with
photon index -1.9. It is located in the direction of the dense OB stellar
association, Cygnus OB2. Its integral flux above energies E>1 TeV amounts to
\~5% of the Crab assuming a Gaussian profile for the intrinsic source
morphology. There is no obvious counterpart at radio, optical nor X-ray
energies, leaving TeVJ2032+4130 presently unidentified. Observational
parameters of this source are updated here and some astrophysical discussion is
provided. Also included are upper limits for a number of other interesting
sources in the FoV, including the famous microquasar Cygnus X-3.Comment: 7 pages, 3 figures. Accepted for publication in Astronomy &
Astrophysic
Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar Markarian 421 during February and May 2000
In this paper we present the results of simultaneous observations of the TeV
blazar Markarian 421 (Mrk 421) at X-ray and TeV Gamma-ray energies with the
Rossi X-Ray Timing Explorer (RXTE) and the stereoscopic Cherenkov Telescope
system of the HEGRA (High Energy Gamma Ray Astronomy) experiment, respectively.
The source was monitored from February 2nd to February 16th and from May 3rd to
May 8th, 2000. We discuss in detail the temporal and spectral properties of the
source. Remarkably, the TeV observations of February 7th/8th showed
statistically significant evidence for substantial TeV flux variability on 30
min time scale. We show the results of modeling the data with a time dependent
homogeneous Synchrotron Self-Compton (SSC) model. The X-ray and TeV gamma-ray
emission strengths and energy spectra together with the rapid flux variability
strongly suggest that the emission volume is approaching the observer with a
Doppler factor of 50 or higher. The different flux variability time scales
observed at X-rays and TeV Gamma-rays indicate that a more detailed analysis
will require inhomogeneous models with several emission zones.Comment: Accepted for Publication in ApJ, 21 Pages, 5 Figure
Is the giant radio galaxy M 87 a TeV gamma-ray emitter?
For the first time an excess of photons above an energy threshold of 730 GeV from the giant radio galaxy M 87 has been measured at a significance level above 4 σ. The data have been taken during the years 1998 and 1999 with the HEGRA stereoscopic system of 5 imaging atmospheric Cherenkov telescopes. The excess of 107.4 ± 26.8 events above 730 GeV corresponds to an integral flux of 3.3% of the Crab flux or Nγ (E > 730 GeV) = (0.96 ± 0.23) × 10-12 phot cm-2 s-1. M 87 is located at the center of the Virgo cluster of galaxies at a relatively small redshift of z = 0.00436 and is a promising candidate among the class of giant radio galaxies for the emission of TeV γ-radiation. The detection of TeV γ-rays from M 87 - if confirmed - would establish a new class of extragalactic source in this energy regime since all other AGN detected to date at TeV energies are BL Lac type objects.F. A. Aharonian ...G. P. Rowell...et al
The TeV Energy Spectrum of Mkn 501 Measured with the Stereoscopic Telescope System of HEGRA during 1998 and 1999
During 1997, the BL Lac object Mkn 501 went into an extraordinary state of
high X-ray and TeV gamma-ray activity, lasting more than 6 months. In this
paper we report on the TeV emission characteristics of the source in the
subsequent years of 1998 and 1999 as measured with the Stereoscopic Cherenkov
Telescope System of HEGRA (La Palma, Canary Islands). Our observations reveal a
1998-1999 mean emission level at 1 TeV of 1/3 of the flux of the Crab Nebula, a
factor of 10 lower than during the year of 1997. A dataset of 122 observations
hours with the HEGRA telescope system makes it possible to assess for the first
time the Mkn 501 TeV energy spectrum for a mean flux level substantially below
that of the Crab Nebula with reasonable statistical accuracy. Excluding the
data of a strong flare, we find evidence that the 1998--1999 low-flux spectrum
is substantially softer (by 0.44+-0.1(stat) in spectral index) than the 1997
time averaged spectrum. The 500 GeV to 10 TeV energy spectrum can well be
described by a power law model with exponential cutoff: dN/dE ~ E^(-alpha)
exp(-E/E0) with alpha=2.31+-0.22(stat), and E0=5.1 (-2.3+7.8)(stat) TeV. Within
statistical accuracy, also a pure power law model gives an acceptable fit to
the data: dN/dE ~ E^(-Gamma) with Gamma=2.76+-0.08(stat). After presenting the
1998-1999 TeV characteristics of the source we discuss the implications of the
results.Comment: Accepted for publication in The Astrophysical Journal, Part 1, on
August 4th, 200
The Energy Spectrum of TeV Gamma-Rays from the Crab Nebula as measured by the HEGRA system of imaging air Cherenkov telescopes
The Crab Nebula has been observed by the HEGRA (High-Energy Gamma-Ray
Astronomy) stereoscopic system of imaging air Cherenkov telescopes (IACTs) for
a total of about 200 hrs during two observational campaigns: from September
1997 to March 1998 and from August 1998 to April 1999. The recent detailed
studies of system performance give an energy threshold and an energy resolution
for gamma-rays of 500 GeV and ~ 18%, respectively. The Crab energy spectrum was
measured with the HEGRA IACT system in a very broad energy range up to 20 TeV,
using observations at zenith angles up to 65 degrees. The Crab data can be
fitted in the energy range from 1 to 20 TeV by a simple power-law, which yields
dJg/dE = (2.79+/-0.02 +/- 0.5) 10^{-7} E^{-2.59 +/- 0.03 +/- 0.05}, ph m^{-2}
s^{-1} TeV^{-1} The Crab Nebula energy spectrum, as measured with the HEGRA
IACT system, agrees within 15% in the absolute scale and within 0.1 units in
the power law index with the latest measurements by the Whipple, CANGAROO and
CAT groups, consistent within the statistical and systematic errors quoted by
the experiments. The pure power-law spectrum of TeV gamma-rays from the Crab
Nebula constrains the physics parameters of the nebula environment as well as
the models of photon emission.Comment: to appear in ApJ, 29 pages, 6 figure
Observations of H1426+428 with HEGRA -- Observations in 2002 and reanalysis of 1999&2000 data
The HEGRA system of imaging air Cherenkov telescopes has been used to observe
the BL Lac object H1426+428 () for 217.5 hours in 2002. In this data
set alone, the source is detected at a confidence level of ,
confirming this object as a TeV source. The overall flux level during the
observations in 2002 is found to be a factor of lower than during
the previous observations by HEGRA in 1999&2000. A new spectral analysis has
been carried out, improving the signal-to-noise ratio at the expense of a
slightly increased systematic uncertainty and reducing the relative energy
resolution to over a wide range of energies. The new
method has also been applied to the previously published data set taken in 1999
and 2000, confirming the earlier claim of a flattening of the energy spectrum
between 1 and 5 TeV. The data set taken in 2002 shows again a signal at
energies above 1 TeV. We combine the energy spectra as determined by the CAT
and VERITAS groups with our reanalyzed result of the 1999&2000 data set and
apply a correction to account for effects of absorption of high energy photons
on extragalactic background light in the optical to mid infrared band. The
shape of the inferred source spectrum is mostly sensitive to the
characteristics of the extragalactic background light between wavelengths of 1
and 15~mComment: 12 pages, 4 Figures, submitted to A&
Rejection of the hypothesis that Markarian 501 TeV photons are pure Bose-Einstein condensates
The energy spectrum of the Blazar type galaxy Markarian 501 (Mrk 501) as
measured by the High-Energy-Gamma-Ray Astronomy (HEGRA) air Cerenkov telescopes
extends beyond 16 TeV and constitutes the most energetic photons observed from
an extragalactic object. A fraction of the emitted spectrum is possibly
absorbed in interactions with low energy photons of the diffuse extragalactic
infrared radiation, which in turn offers the unique possibility to measure the
diffuse infrared radiation density by TeV spectroscopy. The upper limit on the
density of the extragalactic infrared radiation derived from the TeV
observations imposes constraints on models of galaxy formation and stellar
evolution. One of the recently published ideas to overcome severe absorption of
TeV photons is based upon the assumption that sources like Mrk 501 could
produce Bose-Einstein condensates of coherent photons. The condensates would
have a higher survival probability during the transport in the diffuse
radiation field and could mimic TeV air shower events. The powerful
stereoscopic technique of the HEGRA air Cerenkov telescopes allows to test this
hypothesis by reconstructing the penetration depths of TeV air shower events:
Air showers initiated by Bose-Einstein condensates are expected to reach the
maximum of the shower development in the atmosphere earlier than single photon
events. By comparing the energy-dependent penetration depths of TeV photons
from Mrk 501 with those from the TeV standard-candle Crab Nebula and simulated
air shower events, we can reject the hypothesis that TeV photons from Mrk 501
are pure Bose-Einstein condensates.Comment: 9 pages, 2 figures, published by ApJ Letters, revised version
(simulation results added
- …