319 research outputs found
Light Rare Earth Element Depletion During Deepwater Horizon Blowout Methanotrophy
Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean
Light Rare Earth Element Depletion During Deepwater Horizon Blowout Methanotrophy
Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean
Probing the cosmic acceleration from combinations of different data sets
We examine in some detail the influence of the systematics in different data
sets including type Ia supernova sample, baryon acoustic oscillation data and
the cosmic microwave background information on the fitting results of the
Chevallier-Polarski-Linder parametrization. We find that the systematics in the
data sets does influence the fitting results and leads to different evolutional
behavior of dark energy. To check the versatility of Chevallier-Polarski-Linder
parametrization, we also perform the analysis on the Wetterich parametrization
of dark energy. The results show that both the parametrization of dark energy
and the systematics in data sets influence the evolutional behavior of dark
energy.Comment: 15 pages, 5 figures and 1 table, major revision, delete bao a data,
main results unchanged. jcap in press
The sensitivity of BAO Dark Energy Constraints to General Isocurvature Perturbations
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for
addressing the dark energy challenge in the next decade. We explore in detail
the effect of allowing for small amplitude admixtures of general isocurvature
perturbations in addition to the dominant adiabatic mode. We find that
non-adiabatic initial conditions leave the sound speed unchanged but instead
excite different harmonics. These harmonics couple differently to Silk damping,
altering the form and evolution of acoustic waves in the baryon-photon fluid
prior to decoupling. This modifies not only the scale on which the sound waves
imprint onto the baryon distribution, which is used as the standard ruler in
BAO surveys, but also the shape, width and height of the BAO peak. We discuss
these effects in detail and show how more general initial conditions impact our
interpretation of cosmological data in dark energy studies. We find that the
inclusion of these additional isocurvature modes leads to an increase in the
Dark Energy Task Force Figure of merit by 140% and 60% for the BOSS and ADEPT
experiments respectively when considered in conjunction with Planck data. We
also show that the incorrect assumption of adiabaticity has the potential to
bias our estimates of the dark energy parameters by () for a
single correlated isocurvature mode, and up to () for three
correlated isocurvature modes in the case of the BOSS (ADEPT) experiment. We
find that the use of the large scale structure data in conjunction with CMB
data improves our ability to measure the contributions of different modes to
the initial conditions by as much as 100% for certain modes in the fully
correlated case.Comment: 20 pages, 17 figure
Acting on incidental findings in research imaging
No abstract available
Kaluza-Klein Cosmology With Modified Holographic Dark Energy
We investigate the compact Kaluza-Klein cosmology in which modified
holographic dark energy is interacting with dark matter. Using this scenario,
we evaluate equation of state parameter as well as equation of evolution of the
modified holographic dark energy. Further, it is shown that the generalized
second law of thermodynamics holds without any constraint.Comment: 13 pages, accepted for publication in Gen. Relativ. Gravi
Time-Varying Dark Energy Constraints From the Latest SN Ia, BAO and SGL
Based on the latest SNe Ia data provided by Hicken et al. (2009) with using
MLCS17 light curve fitter, together with the Baryon Acoustic Oscillation(BAO)
and strong gravitational lenses(SGL), we investigate the constraints on the
dark energy equation-of-state parameter in the flat universe, especially
for the time-varying case . The constraints from SNe data
alone are found to be: (a) as the best-fit
results; (b) for
the two parameters in the time-varying case after marginalizing the parameter
; (c) the likelihood of parameter has a high non-Gaussian
distribution; (d) an extra restriction on is necessary to improve
the constraint of the SNe Ia data on the parameters (, ). A joint
analysis of SNe Ia data and BAO is made to break the degeneracy between and
, and leads to the interesting maximum likelihoods and
. When marginalizing the parameter , the fitting results are
found to be . After
adding the splitting angle statistic of SGL data, a consistent constraint is
obtained and the constraints on time-varying
dark energy are further improved to be , which indicates that the phantom type models are
disfavored.Comment: 24 pages, 9 figures, to be published in JCA
Single-field inflation constraints from CMB and SDSS data
We present constraints on canonical single-field inflation derived from WMAP
five year, ACBAR, QUAD, BICEP data combined with the halo power spectrum from
SDSS LRG7. Models with a non-scale-invariant spectrum and a red tilt n_s < 1
are now preferred over the Harrison-Zel'dovich model (n_s = 1, tensor-to-scalar
ratio r = 0) at high significance. Assuming no running of the spectral indices,
we derive constraints on the parameters (n_s, r) and compare our results with
the predictions of simple inflationary models. The marginalised credible
intervals read n_s = 0.962^{+0.028}_{-0.026} and r < 0.17 (at 95% confidence
level). Interestingly, the 68% c.l. contours favour mainly models with a convex
potential in the observable region, but the quadratic potential model remains
inside the 95% c.l. contours. We demonstrate that these results are robust to
changes in the datasets considered and in the theoretical assumptions made. We
then consider a non-vanishing running of the spectral indices by employing
different methods, non-parametric but approximate, or parametric but exact.
With our combination of CMB and LSS data, running models are preferred over
power-law models only by a Delta chi^2 ~ 5.8, allowing inflationary stages
producing a sizable negative running -0.063^{+0.061}_{-0.049} and larger
tensor-scalar ratio r < 0.33 at the 95% c.l. This requires large values of the
third derivative of the inflaton potential within the observable range. We
derive bounds on this derivative under the assumption that the inflaton
potential can be approximated as a third order polynomial within the observable
range.Comment: 32 pages, 7 figures. v2: additional references, some typos corrected,
passed to JCAP style. v3: minor changes, matches published versio
Testing the Void against Cosmological data: fitting CMB, BAO, SN and H0
In this paper, instead of invoking Dark Energy, we try and fit various
cosmological observations with a large Gpc scale under-dense region (Void)
which is modeled by a Lemaitre-Tolman-Bondi metric that at large distances
becomes a homogeneous FLRW metric. We improve on previous analyses by allowing
for nonzero overall curvature, accurately computing the distance to the
last-scattering surface and the observed scale of the Baryon Acoustic peaks,
and investigating important effects that could arise from having nontrivial
Void density profiles. We mainly focus on the WMAP 7-yr data (TT and TE),
Supernova data (SDSS SN), Hubble constant measurements (HST) and Baryon
Acoustic Oscillation data (SDSS and LRG). We find that the inclusion of a
nonzero overall curvature drastically improves the goodness of fit of the Void
model, bringing it very close to that of a homogeneous universe containing Dark
Energy, while by varying the profile one can increase the value of the local
Hubble parameter which has been a challenge for these models. We also try to
gauge how well our model can fit the large-scale-structure data, but a
comprehensive analysis will require the knowledge of perturbations on LTB
metrics. The model is consistent with the CMB dipole if the observer is about
15 Mpc off the centre of the Void. Remarkably, such an off-center position may
be able to account for the recent anomalous measurements of a large bulk flow
from kSZ data. Finally we provide several analytical approximations in
different regimes for the LTB metric, and a numerical module for CosmoMC, thus
allowing for a MCMC exploration of the full parameter space.Comment: 70 pages, 12 figures, matches version accepted for publication in
JCAP. References added, numerical values in tables changed due to minor bug,
conclusions unaltered. Numerical module available at
http://web.physik.rwth-aachen.de/download/valkenburg
Hot Organic Chemistry in the Inner Part of Protoplanetary Disks
LPI Contribution No. 128
- …