4,995 research outputs found
Spitzer-IRS high resolution spectroscopy of the 12\mu m Seyfert galaxies: I. First results
The first high resolution Spitzer IRS 9-37um spectra of 29 Seyfert galaxies
(about one quarter) of the 12um Active Galaxy Sample are presented and
discussed. The high resolution spectroscopy was obtained with corresponding
off-source observations. This allows excellent background subtraction, so that
the continuum levels and strengths of weak emission lines are accurately
measured. The result is several new combinations of emission line ratios,
line/continuum and continuum/continuum ratios that turn out to be effective
diagnostics of the strength of the AGN component in the IR emission of these
galaxies. The line ratios [NeV]/[NeII], [OIV]/[NeII], already known, but also
[NeIII]/[NeII] and [NeV]/[SiII] can all be effectively used to measure the
dominance of the AGN. We extend the analysis, already done using the 6.2um PAH
emission feature, to the equivalent width of the 11.25um PAH feature, which
also anti-correlates with the dominance of the AGN. We measure that the 11.25um
PAH feature has a constant ratio with the H_2 S(1) irrespective of Seyfert
type, approximately 10 to 1. Using the ratio of accurate flux measurements at
about 19um with the two spectrometer channels, having aperture areas differing
by a factor 4, we measured the source extendness and correlated it with the
emission line and PAH feature equivalent widths. The extendness of the source
gives another measure of the AGN dominance and correlates both with the EWs of
[NeII] and PAH emission. Using the rotational transitions of H we were able
to estimate temperatures (200-300K) and masses (1-10 x 10^6 M_sun), or
significant limits on them, for the warm molecular component in the galaxies
observed.Comment: submitted to ApJ, Aug.2007, revised, in the refereeing proces
ISO observations toward the reflection nebula NGC 7023: A nonequilibrium ortho- to para-H2 ratio
We have observed the S(0), S(1), S(2), S(3), S(4) and S(5) rotational lines
of molecular hydrogen (H2) towards the peak of the photodissociation region
(PDR) associated with the reflection nebula NGC 7023. The observed H2 line
ratios show that they arise in warm gas with kinetic temperatures ~300 - 700 K.
However, the data cannot be fitted by an ortho- to para- (OTP) ratio of 3. An
OTP ratio in the range ~1.5 - 2 is necessary to explain our observations. This
is the first detection of a non-equilibrium OTP ratio measured from the H2
pure-rotational lines in a PDR. The existence of a dynamical PDR is discussed
as the most likely explanation for this low OTP ratio.Comment: 4 pages, 3 figure
Water in Emission in the ISO Spectrum of the Early M Supergiant Star mu Cephei
We report a detection of water in emission in the spectrum of the M2
supergiant atar mu Cep (M2Ia) observed by the Short Wavelength Spectrometer
(SWS) aboard Infrared Space Observatory (ISO) and now released as the ISO
Archives. The emission first appears in the 6 micron region (nu2 fundamental)
and then in the 40 micron region (pure rotation lines) despite the rather
strong dust emission. The intensity ratios of the emission features are far
from those of the optically thin gaseous emission. Instead, we could reproduce
the major observed emission features by an optically thick water sphere of the
inner radius about two stellar radii (1300Rsun), Tex = 1500K, and Ncol (H2O) =
3.0E+20/cm2. This model also accounts for the H2O absorption bands in the near
infrared (1.4, 1.9, and 2.7 micron) as well. The detection of water in emission
provides strong constraints on the nature of water in the early M supergiant
stars, and especially its origin in the outer atmosphere is confirmed against
other models such as the large convective cell model. We finally confirm that
the early M supergiant star is surrounded by a huge optically thick sphere of
the warm water vapor, which may be referred to as MOLsphere for simplicity.
Thus, the outer atmosphere of M supergiant stars should have a complicated
hierarchical and/or hybrid structure with at least three major constituents
including the warm MOLsphere (T about 1.0E+3K) together with the previously
known hot chromosphere (T about 1.0E+4K) and cool expanding gas-dust envelope
(T about 1.0E+2K).Comment: 14 pages, 5 postscript figures, to appear in ApJ
Does Good Mutation Help You Live Longer?
We study the dynamics of an age-structured population in which the life
expectancy of an offspring may be mutated with respect to that of its parent.
When advantageous mutation is favored, the average fitness of the population
grows linearly with time , while in the opposite case the average fitness is
constant. For no mutational bias, the average fitness grows as t^{2/3}. The
average age of the population remains finite in all cases and paradoxically is
a decreasing function of the overall population fitness.Comment: 4 pages, 2 figures, RevTeX revised version, to appear in Phys. Rev.
Let
Hot Organic Molecules Toward a Young Low-Mass Star: A Look at Inner Disk Chemistry
Spitzer Space Telescope spectra of the low mass young stellar object (YSO)
IRS 46 (L_bol ~ 0.6 L_sun) in Ophiuchus reveal strong vibration-rotation
absorption bands of gaseous C2H2, HCN, and CO2. This is the only source out of
a sample of ~100 YSO's that shows these features and the first time they are
seen in the spectrum of a solar-mass YSO. Analysis of the Spitzer data combined
with Keck L- and M-band spectra gives excitation temperatures of > 350 K and
abundances of 10(-6)-10(-5) with respect to H2, orders of magnitude higher than
those found in cold clouds. In spite of this high abundance, the HCN J=4-3 line
is barely detected with the James Clerk Maxwell Telescope, indicating a source
diameter less than 13 AU. The (sub)millimeter continuum emission and the
absence of scattered light in near-infrared images limits the mass and
temperature of any remnant collapse envelope to less than 0.01 M_sun and 100 K,
respectively. This excludes a hot-core type region as found in high-mass YSO's.
The most plausible origin of this hot gas rich in organic molecules is in the
inner (<6 AU radius) region of the disk around IRS 46, either the disk itself
or a disk wind. A nearly edge-on 2-D disk model fits the spectral energy
distribution (SED) and gives a column of dense warm gas along the line of sight
that is consistent with the absorption data. These data illustrate the unique
potential of high-resolution infrared spectroscopy to probe organic chemistry,
gas temperatures and kinematics in the planet-forming zones close to a young
star.Comment: 4 pages, 4 figures; To appear in Astrophysical Journal Letter
- …