1,246 research outputs found

    Cure kinetics of ring-opening metathesis polymerization of dicyclopentadiene

    Get PDF
    The cure kinetics of polydicyclopentadiene (pDCPD) prepared by ring-opening metathesis polymerization with three different concentrations of Grubbs' catalyst was examined using differential scanning calirimetry (DSC). The experimental data were used to test several different phenomenological kinetic models. The data are best modeled with a "model-free" isoconversional method. This analysis reveals that the activation energy increases significantly for degree of cure greater than 60%. Catalyst concentration is shown to have a large effect on the cure kinetics.published or submitted for publicationis peer reviewe

    In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene

    Get PDF
    Microencapsulated healing agents that possess adequate strength, long shelf-life, and excellent bonding to the host material are required for self-healing materials. Ureaformaldehyde microcapsules containing dicyclopentadiene were prepared by in situ polymerization in an oil-in-water emulsion that meet these requirements for self-healing epoxy. Microcapsules of 10-1000 ??m in diameter were produced by appropriate selection of agitation rate in the range of 200-2000 rpm. A linear relation exists between log(mean diameter) and log(agitation rate). Surface morphology and shell wall thickness were investigated by optical and electron microscopy. Microcapsules are composed of a smooth 160-220 nm inner membrane and a rough, porous outer surface of agglomerated urea-formaldehyde nanoparticles. Surface morphology is influenced by pH of the reacting emulsion and interfacial surface area at the core-water interface. High yields (80-90%) of a free flowing powder of spherical microcapsules were produced with a fill content of 83-92 wt% as determined by CHN analysis.published or submitted for publicationis peer reviewe

    Green aqueous surface modification of polypropylene for novel polymer nanocomposites

    Get PDF
    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications

    The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    Get PDF
    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19) x 10**(-4)/(yr Mpc**3) at a mean redshift of 0.072 +/- 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.Comment: Minor corrections to references and affiliations to conform with published versio

    Electromagnetic Nondestructive Evaluation of Wire Insulation and Models of Insulation Material Properties

    Get PDF
    Polymers have been widely used as wiring electrical insulation materials in space/air-craft. The dielectric properties of insulation polymers can change over time, however, due to various aging processes such as exposure to heat, humidity and mechanical stress. Therefore, the study of polymers used in electrical insulation of wiring is important to the aerospace industry due to potential loss of life and aircraft in the event of an electrical fire caused by breakdown of wiring insulation. Part of this research is focused on studying the mechanisms of various environmental aging process of the polymers used in electrical wiring insulation and the ways in which their dielectric properties change as the material is subject to the aging processes. The other part of the project is to determine the feasibility of a new capacitive nondestructive testing method to indicate degradation in the wiring insulation, by measuring its permittivity

    High performance thermosets with tailored properties derived from methacrylated eugenol and epoxy-based vinyl ester

    Get PDF
    A renewable chemical, eugenol, is methacrylated to produce methacrylated eugenol (ME) employing the Steglich esterification reaction without any solvent. The resulting ME is used as a low viscosity comonomer to replace styrene in a commercial epoxy-based vinyl ester resin (VE). The volatility and viscosity of ME and styrene are compared. The effect of ME loadings and temperatures on viscosity of the VE-ME resin is investigated. Moreover, the thermo-mechanical properties, curing extent, and thermal stability of the fully cured VE-ME thermosets are systematically examined. The results indicate that ME is a monomer with low volatility and low viscosity, and therefore the incorporation of ME monomer in VE resins allows significant reduction of viscosity. Moreover, viscosity of the VE-ME resin can be tailored by adjusting ME loadings and processing temperature to meet commercial liquid molding technology requirements. The glass transition temperatures of VE-ME thermosets range from 139 to 199 °C. In addition, more than 95% of the monomer is incorporated and fixed in the crosslinked network structure of VE-ME thermosets. Overall, the developed ME monomer exhibits promising potential to replace styrene as an effective low viscosity comonomer. The VE-ME resins show great advantages for use in polymer matrices for high performance fiber-reinforced composites. This work showed great significance to the vinyl ester industry by providing detailed experimental support
    • …
    corecore